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Trace estimation is a significant challenge in lattice QCD simulations. The Hutchinson method’s
accuracy scales with the square root of the sample size, resulting in high computational costs for
precise estimates. Variance reduction techniques, such as deflating the lowest eigen or singular
vectors of the matrix, are employed to alleviate this issue.
This study explores Multigrid Multilevel Monte Carlo (MGMLMC) to reduce the computational
cost of constructing the deflation subspace while maintaining efficient application of the deflation
projectors and improving variance reduction. In MGMLMC, spectral deflation is accomplished
using a projector derived from the multigrid prolongator 𝑃 used in solving linear systems involving
the Wilson-Dirac operator. By utilizing the low-mode spectral information inherent in 𝑃, this
approach significantly lowers memory requirements while achieving up to a three-fold variance
reduction compared to inexact deflation, which relies on a few iterations of the inverse block power
method to derive the deflation subspace.
We investigate the efficacy of MGMLMC for computing tr(𝐵(𝑡)𝐷−1 (𝑡, 𝑡)), where 𝐵(𝑡) acts on
spin, color, and space indices, for example, a combination of gamma matrices and gauge covariant
spatial derivatives.
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1. Introduction

We consider estimating the trace of the inverse of a large sparse matrix 𝐷 ∈ C𝑛×𝑛, possibly af-
ter multiplication by an operator 𝐵, i.e., computing quantities of the form tr(𝐵𝐷−1). This problem
arises in various fields, notably in Lattice Quantum Chromodynamics (QCD), where the discon-
nected fermion loop contributions to an observable are obtained from the trace of the inverse of
the discretized Dirac operator multiplied by an operator Γ, i.e., tr(Γ𝐷−1) [1]. The operator Γ fixes
the symmetry channel; for example, when Γ is the identity operator, it appears in the two-point
function of a scalar meson or in the mass derivative of the action [2]. We also explore quantities
of the form tr(𝐵(𝑡)𝐷−1(𝑡, 𝑡)), where 𝐵(𝑡) is an operator acting on spin, color, and space indices at
a fixed time slice 𝑡. Here, 𝐷 (𝑡, 𝑡) denotes a time-slice of the Dirac operator, considering only the
three spatial coordinates. Examples of 𝐵(𝑡) include combinations of gamma matrices and gauge
covariant spatial derivatives [2].

Because the 𝑛× 𝑛 matrix 𝐷 is exceedingly large, direct computation of its inverse is infeasible.
The only practical way to access information about the entries of 𝐷−1 is through matrix-vector
multiplications 𝐷−1𝑥, that is, by solving linear systems involving the matrix 𝐷. This situation
necessitates the use of stochastic estimation techniques, such as Hutchinson’s method [3], which
uses random vectors 𝑥 ∈ C𝑛 whose components 𝑥𝑖 follow an isotropic distribution, meaning

E[|𝑥𝑖 |2] = 1, E[𝑥𝑖𝑥 𝑗] = 0 for 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ≠ 𝑗 . (1)

Typically, the components are independent and identically distributed (i.i.d.) complex numbers 𝑧

with E[𝑧] = 0 and E[|𝑧 |2] = 1. A notable example is Rademacher vectors, where 𝑧 is uniformly
distributed in {−1, 1}. For Z4-vectors, 𝑧 is instead uniformly distributed in {−1,−𝑖, 1, 𝑖}, where 𝑖

is the imaginary unit. By averaging 𝑥†𝐷−1𝑥 over 𝑁 independent random vectors 𝑥, we obtain an
unbiased estimator for the trace:

tr(𝐷−1) ≈ t̂r(𝐷−1) = 1
𝑁

𝑁∑
𝑖=1

(𝑥 (𝑖) )†𝐷−1𝑥 (𝑖) . (2)

The key limitation of this Monte Carlo trace estimation is that its accuracy improves only with
the square root of the sample count 𝑁 , making accurate estimations nearly impractical unless vari-
ance can be reduced. In [4] we introduced the multigrid multilevel Monte Carlo (MGMLMC)
method, which uses oblique deflation to achieve variance reduction exploiting local coherence em-
bedded in the intergrid transfer operators from the multigrid hierarchy. This has recently been
applied in [5] to achieve variance reductions in computations of the isovector vector current corre-
lator.

The primary contribution of this study is the enhancement of MGMLMC through the incor-
poration of orthogonal projectors. In section 2, we describe deflation as a variance reduction in
the Hutchinson estimator. In section 3 we detail MGMLMC as a deflation technique and then in-
troduce the upgraded version of the method with the use of orthogonal projectors. Furthermore, a
first approach for the estimation of traces of the form tr(𝐵(𝑡)𝐷−1(𝑡, 𝑡)) with MGMLMC is derived.
Finally, in section 4 we present the numerical experiments that compare MGMLMC with inexact
deflation.
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2. Variance Reduction Techniques

For Rademacher vectors, the variance of the Hutchinson estimator for tr(𝐷−1) is given by
1
2 ∥ offdiag(𝐷−1 + 𝐷−⊤)∥2

𝐹 , while for Z4-vectors, it is ∥ offdiag(𝐷−1)∥2
𝐹 [6]. The heuristics under-

lying variance reduction techniques typically aim at reducing ∥𝐷−1∥2
𝐹 .

2.1 Variance Reduction Using Deflation

Given the relation between the Frobenius norm and the singular values 𝜎𝑖 of a matrix [7],
∥𝐷∥2

𝐹 =
∑𝑛
𝑖=1 𝜎

2
𝑖 , deflation techniques aim to remove contributions of the 𝑘 largest singular values

𝜎1 > 𝜎2 > · · · > 𝜎𝑘 to the variance [8, 9].
From the singular value decomposition 𝐷 = 𝑈Σ𝑉†, let 𝑈𝑘 , 𝑉𝑘 ∈ C𝑛×𝑘 hold the 𝑘 largest

right and left singular vectors of 𝐷−1, i.e., those belonging to the 𝑘 smallest singular values of 𝐷.
Constructing the orthogonal projector Π = 𝑉𝑘𝑉

†
𝑘 , the trace tr(𝐷−1) is split into two terms:

tr(𝐷−1) = tr
(
(𝐼 − Π)𝐷−1

)
+ tr(Π𝐷−1). (3)

The first term contains modes corresponding to the remaining 𝑛 − 𝑘 smaller singular values of
𝐷−1. It has reduced the Frobenius norm and can thus be expected to have a smaller variance.

Using the cyclic property of the trace, the second term in eq. (3) simplifies to tr
(
𝑉†
𝑘𝐷

−1𝑉𝑘

)
,

which, when 𝑉𝑘 and 𝑈𝑘 are exact, is directly computable as Σ−1
𝑘 𝑈†

𝑘𝑉𝑘 with Σ𝑘 the diagonal matrix
containing the 𝑘 deflated singular values. In inexact deflation, where 𝑉𝑘 only approximates right
singular vectors, this term remains computable non-stochastically by solving 𝑘 linear systems.

Although the Dirac operator is a non-Hermitian operator, it exhibits Γ5-hermiticity, i.e., (Γ5𝐷)† =
Γ5𝐷. This property ensures the existence of an eigendecomposition Γ5𝐷 = 𝑉Λ𝑉†, where 𝑉 is uni-
tary. This yields the SVD of 𝐷, 𝐷 = Γ5𝑉Σ𝑉†. In inexact deflation, we obtain 𝑉𝑘 by a few iterations
of the inverse block power method on (Γ5𝐷)−1. Then, estimating tr(𝐷−1) using the Hutchinson
method (eq. (2)) with deflation and with sample size 𝑁 gives

t̂r(𝐷−1) = 1
𝑁

𝑁∑
𝑛=1

[
(𝑥𝑛)†

(
𝐷−1 −𝑉𝑘𝑉

†
𝑘𝐷

−1
)
𝑥𝑛
]
+ tr

(
𝑉†
𝑘𝐷

−1𝑉𝑘

)
. (4)

3. Multigrid Multilevel Monte Carlo (MGMLMC)

MGMLMC is a variance reduction technique introduced in [4], which approximates tr(𝐷−1)
using a recursive deflation technique based on high-rank projectors obtained from a multigrid hier-
archy for 𝐷. There, restrictors 𝑅𝑙 and prolongators 𝑃𝑙, which are operators tarsnporting variables
from level 𝑙 to level 𝑙 + 1 and back, are used to define the coarse-grid (level 𝑙 + 1) operators 𝐷𝑙+1.
In this work, we use the Domain Decomposition aggregation-based 𝛼daptive algebraic multigrid
method (DD𝛼AMG), which is a solver for linear systems of equations arising in simulations of lat-
tice QCD involving Wilson or twisted mass fermions [10]. It uses the Galerkin projection where
𝑅𝑙 = 𝑃†

𝑙 , leading to the coarser operators

𝐷𝑙+1 = 𝑃†
𝑙 𝐷𝑙𝑃𝑙, 𝑙 = 1, . . . , 𝐿 − 1. (5)

3
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MGMLMC realizes deflation using the oblique projectors

Π𝑙 = 𝑃𝑙𝐷
−1
𝑙+1𝑃

†
𝑙 𝐷𝑙, (6)

allowing at each level 𝑙 to split 𝐷−1
𝑙 into a deflated and non-deflated term:

𝐷−1
𝑙 =

(
𝐷−1
𝑙 − 𝑃𝑙𝐷

−1
𝑙+1𝑃

†
𝑙

)
+ 𝑃𝑙𝐷

−1
𝑙+1𝑃

†
𝑙 . (7)

This leads to the following decomposition of tr(𝐷−1)

tr(𝐷−1) =
𝐿−1∑
𝑙=1

[
tr
(
𝐷−1
𝑙 − 𝑃𝑙𝐷

−1
𝑙+1𝑃

†
𝑙

)]
+ tr

(
𝐷−1
𝐿

)
. (8)

Denote 𝑀𝑙 = 𝐷−1
𝑙 − 𝑃𝑙𝐷

−1
𝑙+1𝑃

†
𝑙 . MGMLMC stochastically estimates tr(𝑀𝑙) at each level 𝑙 and

tr(𝐷−1
𝐿 ) at the coarsest level using the Hutchinson method (eq. (2)), giving the unbiased estimator

t̂r(𝐷−1) =
𝐿−1∑
𝑙=1

t̂r(𝑀𝑙) + t̂r(𝐷−1
𝐿 ). (9)

This approach expects the variance for each level difference 𝐷−1
𝑙 −𝑃𝑙𝐷

−1
𝑙+1𝑃

†
𝑙 to be small, since

the prolongators 𝑃𝑙 are built from appproximations to small eigenmodes, and due to local coherence,
they span many of the problematic low modes. The term tr(𝐷−1

𝐿 ) can be cheaply computed either
directly or stochastically since the computational cost of the solution of linear systems is reduced
by a factor of about 8 every time we go from level 𝑙 to level 𝑙 + 1.

3.1 MGMLMC Through an Orthogonal Projector
An orthogonal projector (Π† = Π) is guaranteed to reduce the Frobenius norm, whereas an

oblique projector does not necessarily do so (see e.g. [7]). The projector in eq. (6) is oblique,
motivating us to propose an alternative MGMLMC method using an orthogonal projector.

Taking the prolongator operators 𝑃𝑙 from the multigrid construction in DD𝛼AMG, which are
unitary, we build the orthogonal projector Π𝑙 = 𝑃𝑙𝑃

†
𝑙 . Then, we split 𝐷−1

𝑙 into a deflated and
non-deflated term:

𝐷−1
𝑙 = (𝐼 − 𝑃𝑙𝑃

†
𝑙 )𝐷

−1
𝑙 + 𝑃𝑙𝑃

†
𝑙 𝐷

−1
𝑙 , 𝑙 = 1, . . . , 𝐿, (10)

leading to a new MLMC construction for the trace computation:

tr(𝐷−1
𝑙 ) = tr

(
(𝐼 − 𝑃𝑙𝑃

†
𝑙 )𝐷

−1
𝑙

)
+ tr

(
𝑃†
𝑙 𝐷

−1
𝑙 𝑃𝑙 − 𝐷−1

𝑙+1

)
+ tr

(
𝐷−1
𝑙+1

)
. (11)

The first term is a deflation of 𝐷−1
𝑙 from the left, but using (𝐼 − 𝑃𝑙𝑃

†
𝑙 )

2 = 𝐼 − 𝑃𝑙𝑃
†
𝑙 and the cyclic

property of the trace one can simultaneously deflate from the right:

tr(𝐷−1
𝑙 ) = tr

(
(𝐼 − 𝑃𝑙𝑃

†
𝑙 )𝐷

−1
𝑙 (𝐼 − 𝑃𝑙𝑃

†
𝑙 )
)
+ tr

(
𝑃†
𝑙 𝐷

−1
𝑙 𝑃𝑙 − 𝐷−1

𝑙+1

)
+ tr

(
𝐷−1
𝑙+1

)
. (12)

Denoting 𝐹𝑙 the “full-rank difference operator” 𝑃†
𝑙 𝐷

−1
𝑙 𝑃𝑙 − 𝐷−1

𝑙+1 and 𝑂𝑙 the orthogonally de-
flated operator (𝐼 − 𝑃𝑙𝑃

†
𝑙 )𝐷

−1
𝑙 (𝐼 − 𝑃𝑙𝑃

†
𝑙 ) at each level 𝑙, and computing each term stochastically,

we obtain the unbiased stochastic estimator

t̂r(𝐷−1) =
𝐿−1∑
𝑙=1

t̂r(𝑂𝑙) +
𝐿−1∑
𝑙=1

t̂r(𝐹𝑙) + t̂r(𝐷−1
𝐿 ). (13)
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3.2 Estimation of traces for the measurement of observables

In Lattice QCD, the measurement of observables involves traces of the form tr(𝐵𝐷−1(𝑡, 𝑡)) [2].
We can write

tr(𝐵𝐷−1(𝑡, 𝑡)) = tr(𝑃3𝐷𝐵𝐷
−1𝑃†

3𝐷), (14)

where 𝑃3𝐷 orthogonally projects onto the time-slice 𝑡. We here present a first proof of concept for
a multilevel approach by applying the two-level MGMLMC method from eq. (8) directly on 𝐷−1:

tr(𝐷−1
1 (𝑡, 𝑡)) = tr

(
𝑃3𝐷𝐵

(
𝐷−1

1 − 𝑃1𝐷
−1
2 𝑃†

1

)
𝑃†

3𝐷

)
+ tr

(
𝑃3𝐷𝐵𝑃1𝐷

−1
2 𝑃†

1𝑃
†
3𝐷

)
,

(15)

which can be extended to three levels:

tr(𝐷−1
1 (𝑡, 𝑡)) = tr

(
𝑃3𝐷𝐵

(
𝐷−1

1 − 𝑃1𝐷
−1
2 𝑃†

1

)
𝑃†

3𝐷

)
(16)

+ tr
(
𝑃3𝐷𝑃1𝐵

(
𝐷−1

2 − 𝑃2𝐷
−1
3 𝑃†

2

)
𝑃†

1𝑃
†
3𝐷

)
+ tr

(
𝑃3𝐷𝐵𝑃1𝑃2𝐷

−1
3 𝑃†

2𝑃
†
1𝑃

†
3𝐷

)
.

4. Numerical Experiments

In this section, we present the results of using MGMLMC for two types of problems: the
estimation of tr(𝐷−1) and tr

(
𝐵(𝑡)𝐷−1(𝑡, 𝑡)

)
. For the first problem, we demonstrate the benefits of

our oblique and orthogonal MGMLMC methods over inexact deflation on very large configurations
from the CLS collaboration [11] (see Table 1). We implemented our code1 as en extension of
DD𝛼AMG, and ran the computations using up to to 54 nodes, each consisting of 2 sockets with
AMD EPYC 7452 32-Core processors.

For the second problem, we perform experiments on a lattice of size 164 using a single process
with a MATLAB implementation2 of our approach, comparing it against inexact deflation.

4.1 Estimation of tr(𝐷)−1

ensemble temporal b.c. Size 𝑚𝜋 [MeV] 𝑚𝐾 [MeV] 𝑎 [fm]

J501 Open 192 × 643 336 448 0.39
E250 Periodic 192 × 963 131 493 0.63

Table 1: Comparison of lattice QCD parameters for ensembles J501 and E250.

We computed the estimated variance for the trace estimates of the operators in all the introduced
methods. In the oblique MGMLMC method ( eq. (9)), the variance was measured for the difference
operators 𝑀𝑙 and the coarsest-level inverse operator 𝐷−1

𝐿 . In the orthogonal MGMLMC method
( eq. (12)), we evaluated the variance for the full-rank operators 𝐹𝑙 and the orthogonal operators

1Available at https://github.com/jomjimenezme/MLMC_ci.
2Available at https://github.com/Gustavroot/MGMLMC_for_mat_with_displ.
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Figure 1: Configuration J501. Estimated variances for the operators: oblique 𝑂𝑂, full rank 𝑂𝐹 , orthogonal
𝑂𝑂, and coarsest 𝐴−1

𝐿 at different levels 𝑙. Compared against inexact deflation. The used sample size is
𝑁 = 500.

𝑂𝑙. For Hutchinson’s inexactly deflated method eq. (3), we similarly computed the variance for the
trace estimates.

A sample size of 𝑁 = 500 was used across all variance measurements for all trace estimations
of the operators at levels 𝑙 = 1, 2, 3, and the coarsest level 𝐿 = 4. The variance was estimated using
the unbiased estimator for the variance of the sample mean of a complex random variable 𝑋 with
estimated mean 𝜇̂:

𝑉 =
1

𝑁 − 1

𝑁∑
𝑖=1

|𝑋𝑖 − 𝜇̂ |2. (17)

For each operator sample, we needed to solve linear systems involving the matrices 𝐴𝑙 or 𝐴𝑙+1.
The 𝐷𝐷𝛼AMG multigrid hierarchy established for the matrix 𝐴 served as the framework for these
solves. The consistent use of the prolongator operators 𝑃𝑙 across all levels allowed for a seamless
multigrid solver at each level without additional cost or overhead. At the coarsest level 𝐿, flexible
GMRES was employed. All solves were performed with a relative residual tolerance of 1 × 10−8.

For Hutchinson’s inexactly deflated method, we used 𝑘 = 128 deflation vectors, appearing as
the columns of 𝑉𝑘 , and those were obtained using five iterations of the inverse block power method
on (Γ5𝐷), with each inversion aiming for an accuracy of 1 × 10−6. The second term in eq. (3) was
computed using the necessary 𝑘 solves and 𝑘 vector-vector products.

Figure 1 shows that both of our approaches (oblique and orthogonal MGMLMC) achieve a
significant variance reduction compared to inexact deflation at the finest (most expensive) level.
This directly translates to a smaller required sample size (i.e., fewer solves) at the finest level for a
given accuracy. On the coarser levels, we also observe reduced variance in the deflated operators and
in the coarsest-level operator 𝐴−1

𝐿 . As previously noted, the cost of solving decreases significantly as
we move to coarser levels, with each transition reducing the computational cost by approximately a
factor of 8. Furthermore, the plot shows that the operators from the orthogonal MGMLMC method,
𝑂𝑙 and 𝐹𝑙, indeed present a lower variance than the operators 𝑀𝑙 of the oblique one.
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Figure 2: E250 configuration. Estimated variances for the operators: oblique 𝑂𝑂, full rank 𝑂𝐹 , orthogonal
𝑂𝑂, and coarsest 𝐴−1

𝐿 at different levels 𝑙. Compared against inexact deflation. The used sample size is
𝑁 = 500.

In contrast, inexact deflation not only exhibits higher variance but also incurs additional over-
head from precomputing the deflation space at the finest level. Specifically, this involves multiple
solves during the inverse block power iteration, where 128 deflation vectors are used with 6 inverse
iterations, totaling around 700 inexact solves. Consequently, the overall cost of the MGMLMC
methods is lower, as they avoid this precomputation overhead while keeping the extra computa-
tional effort on coarser levels minimal.

Figure 2 demonstrates that for the lighter mass E250 configuration, the previously discussed
reasoning remains applicable. However, at levels 3 and 4, we observe an increase in the variance for
the deflated operators 𝑀𝑙 and 𝐹𝑙. On these levels solves are approximately 100 to 1000 faster than
at the finest level, which significantly offsets the effect of increased variance. Consequently, the
overall computational effort required at these levels remains minimal, ensuring that the efficiency
and scalability of the MGMLMC methods are preserved.

4.2 Estimation of tr(𝐵(𝑡)𝐷 (𝑡, 𝑡)

We analyze the variance reduction achieved by the oblique MGMLMC compared against in-
exact deflation in estimating traces relevant to the measurement of observables tr(𝐵(𝑡)𝐷 (𝑡, 𝑡) [2].
In this first approach we consider two cases, first 𝐵 = 𝐼 and then 𝐵 =

∑
𝑖 Γ𝑖∇𝑖 .

For the case 𝐵 = 𝐼, the measurements are presented in in Table 2, the non-deflated Hutchinson
method is shown for reference. We first compare the variance at the finest level, which is the most
computationally expensive level. To achieve the same variance reduction as MGMLMC, inexact
deflation needs to build a deflation space made up by 𝑘 = 64 vectors. MGMLMC proves to be more
cost efficient since it avoids the cost of constructing the deflation space. In MGLMC, the variance
shifts to the second level, where solvers have less computational cost, and at the third level, the

7
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𝑘 Inexact-def MGMLMC
0 75278 1st

lvl: 1862, 2nd
lvl: 9905, 3rd

lvl: 0
8 2107 -
16 1994 -
32 1939 -
64 1863 -

Table 2: Variance results for the estimation of tr(𝐷 (𝑡, 𝑡)) using inexact deflation with 𝑘 deflation vectors
compared against oblique MGMLMC.

variance is zero because the last term in eq. (16) is computed exactly (non-stochastically).
When considering the operator 𝐵 =

∑
𝑖 Γ𝑖∇𝑖 , Table 3 illustrates the difficulty of the problem

since the trace has a small value and the variance of the Hutchinson estimator is large variance.
While both deflation methods present only a modest reduction of the variance, inexact deflation
reduces the variance by 3%, whereas MGMLMC achieves a variance reduction of 12% at the first
level.

Method Trace Variance
Hutchinson 12.1 8906
Inexact Deflation (𝑘 = 64) 11.8 8660
MGMLMC 11.5 Level 1: 7896, Level 2: 497

Table 3: Variance results for the estimation of tr(∑𝑖 Γ𝑖∇𝑖𝐷 (𝑡, 𝑡) using inexact deflation with 𝑘 = 64 deflation
vectors compared against oblique MGMLMC.

5. Conclusion

We developed a new MGMLMC method which uses additional orthogonal projectors and
demonstrated its ability to further reduce the variance when compared with its oblique counterpart
for the estimation of tr(𝐷−1) in very large configurations.

Furthermore, we presented a first approach for the computation of traces of operators of the
form 𝐵(𝑡)𝐷−1(𝑡, 𝑡) using oblique MGMLMC and showed how it compares to inexact deflation.
Future work could explore further improvements of MGMLMC for computing tr(𝐵(𝑡)𝐷−1(𝑡, 𝑡)),
such as also deflating 𝐵 or using probing techniques that exploit the structure of 𝐵.
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