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Multigrid-preconditioned solvers have proven crucial for the efficient generation of ensembles of
gauge configurations at physical quark mass parameters. A high performance implementation
of such a solver for GPUs by different vendors and for different types of Wilson fermions is
provided in the QUDA library. It features an autotuner which chooses an optimal communication
policy and an optimal set of kernel launch parameters for each kernel, problem size and domain
decomposition on each architecture.
The performance of the multigrid solver additionally depends on a large number of algorithmic
parameters such as block sizes, numbers of vectors, maximum iterations as well as convergence
thresholds. Many of these parameters have to be tuned on a per-level basis, making the search
space large and an exhaustive approach essentially computationally intractable. In addition, once
a good parameter set is found, in general it will fail to be optimal on a different machine or for a
different domain decomposition.
We present a simple autotuner for these parameters implemented in the tmLQCD software suite
which requires only some intuition on the order in which parameters are to be tuned and the
step sizes to be used in the tuning procedure. The simple approach converges quickly, producing
stable iteration counts and times-to-solution across gauge configurations of a given ensemble. We
demonstrate its applicability to the adjustment of multigrid setups between different machines
or different sets of physical parameters on the basis of results from machines with NVIDIA and
AMD GPUs.
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1. Introduction

The generation of ensembles of gauge configurations in lattice QCD relies on the Hybrid
Monte Carlo (HMC) [1] algorithm. The simulations of the Extended Twisted Mass Collaboration
(ETMC) are performed using the tmLQCD software suite [2–5] which features hybrid OpenMP/MPI
parallelisation and nested Omelyan-Mryglod-Folk [6] and force-gradient [7] integrators. In an
𝑁 𝑓 = 2 + 1 + 1 simulation using Wilson twisted mass (clover) fermions the light determinant is
simulated using several determinant ratios employing Hasenbusch mass splitting [8] and the strange
and charm sector relies on a rational approximation [9] split over multiple partial fractions. Spread
over multiple time scales [10], simulations close to or at the physical point with twisted mass
fermions are made efficient using multigrid (MG) preconditioning [11] which significantly reduces
the cost of the most poorly conditioned monomials in the molecular dynamics Hamiltonian.

Support for GPUs in tmLQCD is provided through an interface [12] to the QUDA [13, 14]
library which also features a highly efficient MG-preconditioned solver [15] for the Wilson (clover)
(twisted mass) operator. The evolution of the performance of this tmLQCD + QUDA setup is shown
in the left panel of fig. 1 which compares time per trajectory in the simulation of a 643 ·128 ensemble
at the physical point on 512 SuperMUC nodes to the timing on eight JUWELS [16] Booster [17]
nodes at three stages of development: (1) with just the fermionic inversions and the gauge force
offloaded, (2) with the light quark force terms offloaded and (3) with all force calculations offloaded
to QUDA. The right panel of the same figure shows a similar comparison for a 1123 · 224 ensemble
at the physical point originally run on 343 Frontera [18] nodes and the same simulation running
on 28 LUMI-G nodes. The speedup in real time per trajectory is around 2.8 and 2.6, respectively,
and the comparatively small number of GPUs required implies an overall improvement in energy
efficiency of around one order of magnitude.
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Figure 1: Left: Time per unit length trajectory of tmLQCD + QUDA (green) for a 643 · 128 ensemble
at the physical point compared to the machine it was originally generated on (purple) using tmLQCD +
DD-𝛼AMG [19]. The different speedups correspond to increasing levels of QUDA offloading. Right: The
same kind of comparison between tmLQCD + QUDA and tmLQCD + DD-𝛼AMG + QPhiX [20–22] running
a 1123 · 224 ensemble at the physical point on LUMI-G and Frontera, respectively.
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parameter symbol sensible choices
mg-mu-factor 𝜇ℓ 5 · 5 · 15 = 375
mg-coarse-solver-tol 𝑟ℓ 42 = 16
mg-coarse-solver-maxiter 𝑛ℓ 42 = 16
mg-nu-post 𝜈

post
ℓ

43 = 64
mg-nu-pre 𝜈

pre
ℓ

43 = 64
mg-smoother-tol 𝑟𝑠

ℓ
33 = 9

mg-omega 𝜔ℓ 33 = 9
total ≈ 1010 combs

parameter sensible choices
mg-block-size ≈ (24)2 = 256
mg-nvec ≈ 22 = 4
total ≈ 1024 combs

Table 1: Subset of tunable algorithmic parameters for the QUDA MG solver and estimates of the number of
“sensible” choices which would need to be tested in an exhaustive search. Left: Parameters for which the
MG setup does not have to be regenerated. Right: Parameters for which the MG setup has to be regenerated.

2. Tuning the Multigrid Solver

A key ingredient enabling this efficiency at the physical pion mass is a tuned three-level MG
setup. In the inversion for the force calculation of the most poorly conditioned determinant ratio,
the MG is around 100 times faster [12] than the fastest mixed-precision conjugate gradient solver
in QUDA. This comes at the cost of having to tune a large number of algorithmic parameters on
multiple levels of the MG aggregation hierarchy. The search space for these algorithmic parameters
consists of two types: those that need the MG setup to be regenerated, such as the block sizes
or the number of null vectors, and those which do not. Of the latter we concern ourselves with
the set shown on the left-hand side of table 1 using the names employed for the corresponding
command-line arguments of the built-in test programs of the QUDA library.

For each parameter 𝑝ℓ
𝑖

we can conceive of a number of “sensible” choices as shown in table 1,
resulting in around 1013 combinations in a naïve outer product, rendering an exhaustive search
intractable. Luckily we may be able to search the space more efficiently relying on some intuition:
1. the metric is time-to-solution: 𝑡new at each tuning step and the best time 𝑡best,
2. we always start at the coarsest grid and work our way up,
3. we start with the most relevant parameter at each level,
4. we stop moving into a particular direction when 𝑡new does not improve more than some factor
{𝛿 | 𝛿 < 1.0}, that is, 𝑡new > 𝛿 · 𝑡best (or if we reach the maximum number of steps for that
direction),

5. if the solver does not yet converge after a step into a particular direction we continue tuning
into that direction in order to not “give up” too early1,

6. to avoid being misled by fluctuations, we accept the result of a particular tuning direction only
if the improvement is better than a factor {𝜌 | 𝛿 < 𝜌 < 1.0}, that is, 𝑡new < 𝜌 · 𝑡best,

7. if the improvement is not good enough, we reset the parameter in question to its value in the
previously best setup and move on to the next parameter and/or level.

The full procedure as well as the parameter names used in the tmLQCD input file are spelled out in
the LATEX-documentation shipped with tmLQCD2 and a pseudocode is given in algorithm 1.

1this allows the auto-tuner to find a setup which at least converges if the initial parameters were especially poor
2The implementation itself can be found in the quda_mg_tune_params function and its children in
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Algorithm 1 Approach for the tuning of the parameter set {𝑝ℓ
𝑖
} on all levels {ℓ}

1: Number of gauge configurations: 𝑁conf ≈ 5
2: Number of tuning iterations per gauge configuration: 𝑁tune ≈ 100 to 300
3: Number of levels: 𝑁ℓ = 3
4: Parameters on level ℓ: 𝑝ℓ

𝑖
∈ {𝜇ℓ , 𝑟ℓ , 𝑛ℓ , 𝜈

post
ℓ

, 𝜈
pre
ℓ

, 𝑟𝑠
ℓ
, 𝜔ℓ } = ®𝑝ℓ

5: Change in parameter 𝑝ℓ
𝑖

per tuning step: ±Δℓ
𝑖

6: Number of tuning steps in direction 𝑝ℓ
𝑖
: 𝑛ℓ

𝑖

7: Tuning tolerance (𝛿) and ignore threshold (𝜌): {𝛿 | 0.99 < 𝛿 < 1.0}; {𝜌 | 𝛿 < 𝜌 < 1.0}
8: Maximum number of iterations for the (outer) solver: 𝑛max

iter ≈ 400
9: for 𝑖conf ∈ 1, 2, . . . , 𝑁conf do

10: if 𝑖conf = 1 then
11: invert 𝐷𝑥 = 𝑏 with initial MG parameter set {𝑝ℓ

𝑖
} → 𝑡best

12: {𝑝ℓ
𝑖
}best = {𝑝ℓ

𝑖
}

13: end if
14: for 𝑖tune ∈ 1, 2, . . . , 𝑁tune do
15: for ℓ ∈ (𝑁ℓ − 1), (𝑁ℓ − 2), . . . , 0 do
16: for 𝑝ℓ

𝑖
∈ 𝑝ℓ1 , 𝑝

ℓ
2 , . . . , 𝑝

ℓ
𝑁

do
17: for 𝑛 ∈ 1, 2, . . . , 𝑛ℓ

𝑖
do

18: 𝑝ℓ
𝑖
= 𝑝ℓ

𝑖
± Δℓ

𝑖

19: invert 𝐷𝑥 = 𝑏 using MG parameter set {𝑝ℓ
𝑖
} → 𝑡new

20: if (𝑛iter < 𝑛max
iter ) && (𝑡new > 𝛿 · 𝑡best) then

21: break
22: end if
23: end for
24: if 𝑡new < 𝜌 · 𝑡best then
25: 𝑡best = 𝑡new
26: {𝑝ℓ

𝑖
}best = {𝑝ℓ

𝑖
}

27: else
28: {𝑝ℓ

𝑖
} = {𝑝ℓ

𝑖
}best

29: end if
30: end for
31: end for
32: end for
33: end for

For twisted mass fermions in the MG without coarse-grid-deflation, the most relevant parameter
is the coarse 𝜇 scaling factor, denoted as 𝜇ℓ in table 1. It was found [19] that the coarse-grid operator
develops a large number of small eigenvalues close to the target twisted quark mass, severely slowing
down convergence on the coarse grid. Because only poor accuracy is required on the coarse level,
the reduction of the density of small eigenvalues obtained by scaling the twisted quark mass by 𝜇ℓ

in the coarse-grid operator significantly improves time-to-solution. Close to the physical point the
solver might not converge at all without such a scaling factor and for QUDA it appears that factors
between 30 and 150 perform best depending on the target quark mass and lattice spacing.

The next most relevant parameters are the coarse-grid solver tolerance and the maximum
number of coarse-grid iterations, 𝑟ℓ and 𝑛ℓ , respectively. While one may think that tuning just
the tolerance would be sufficient, we find in practice that tuning both is beneficial. On certain
gauge configurations the tuned coarse-grid tolerance might only be reached after many coarse-grid

quda_interface.c of the tmLQCD master branch [5]. The autotuner is driven by the deriv_mg_tune executable.
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Table 2: Order of the tuning of the various algo-
rithmic parameters of the QUDA MG solver on
the finest (0), intermediate (1) and coarsest (2)
levels of the MG aggregation hierarchy.

iterations, slowing down the solver as a whole (depending on the architecture). The 𝑛ℓ parameter
then helps to limit the number of coarse-grid iterations while a sufficiently stringent 𝑟ℓ helps to
maintain an acceptable number of intermediate and fine grid iterations. The remaining parameters
enable further fine-tuning and we show the order in which they are swept through in table 2.

3. Dependence on the Target Architecture

The original motivation for the development of this autotuner came from the early-access
phase on LUMI-G where we observed relatively poor performance of the coarse-grid operator in
QUDA on AMD GPUs compared to NVIDIA GPUs. As shown in the left panel of fig. 2, for the
smallest per-node coarse-grid volumes, we observed up to a factor of 10 performance degradation
on LUMI-G compared to JUWELS Booster. This resulted in the time-to-solution of the MG solver
increasing by about a factor of seven when a production MG setup was moved from JUWELS
Booster to LUMI-G, and the time per trajectory by a factor of two or more.

For larger per-node coarse-grid volumes the performance gap decreases and the autotuner was
able to find a different balance between coarse, intermediate and fine grid iterations, reducing the
overall degradation to less than a factor of two and the impact on the time per trajectory to a small
factor close to one. With recent updates of the ROCm version on LUMI-G the performance gap has
reduced substantially as shown in the right panel of fig. 2. For a per-node volume corresponding
to an intermediate-grid operator in a representative MG setup, the operator actually appears to be
faster LUMI-G (rightmost point).

4. Tuning Strategies and Example Runs

A tuning run requires a sensible initial parameter set, {𝑝ℓ
𝑖
}init and an appropriate increment (or

decrement) as well as a maximum number of tuning iterations for each parameter on each level. Two
strategies seem to produce reasonable results: (1) starting from a parameter set for which the solver
converges well but which is expensive (stringent tolerances, many coarse-grid iterations, many
smoothing iterations) or (2) starting from a parameter set for which the solver barely converges3
(lax tolerances, few coarse-grid iterations and a small number of smoothing iterations).

The first strategy, which we term “tuning from above”, is aimed at reducing the cost of the
solver per fine-grid iteration in order to improve time-to-solution. Consequently, maximum iteration
counts are tuned into the negative direction while tolerances are tuned into the positive direction. An

3or even does not converge at all
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Figure 2: Left: Single-precision QUDA coarse Dslash benchmark (24 colours) from October 2022 on a
single JUWELS Booster node (4 × A100) using an unknown QUDA commit and CUDA version (green) and
a single LUMI-G node (4 × MI250) using QUDA commit dd6207e6e and HIP version 50221153 (red) as a
function of the coarse-grid lattice volume. The indicated regions corresponds to the per-node coarsest-grid
lattice volume in realistic scenarios. Right: The same comparison between one node (4 × A100) of the
Marvin HPC cluster at the University of Bonn (green) using CUDA 12.1 and a single LUMI-G node (red)
using HIP 50631062 in July 2024 using commit 6198d60a7 of the QUDA develop branch on both machines.

parameter symbol lvl 0 lvl 1 lvl 2
mg-mu-factor 𝜇ℓ 1.0 , 0.125 , 10 1.0 , 0.25 , 10 30.0 , 5.0 , 20
mg-coarse-solver-tol 𝑟ℓ – , – , 0 0.05 , 0.10 , 10 0.05 , 0.10 , 10
mg-coarse-solver-maxiter 𝑛ℓ – , – , 0 50 , -5 , 10 50 , -5 , 10
mg-nu-post 𝜈

post
ℓ

6 , -2 , 3 6 , -2 , 3 6 , -2 , 3
mg-nu-pre 𝜈

pre
ℓ

6 , -2 , 3 6 , -2 , 3 6 , -2 , 3
mg-smoother-tol 𝑟𝑠

ℓ
0.05 , 0.10 , 5 0.05 , 0.10 , 5 0.05 , 0.10 , 5

mg-omega 𝜔ℓ 0.85 , 0.05 , 4 0.85 , 0.05 , 4 0.85 , 0.05 , 4
Table 3: Initial parameters, increments and maximum number of steps in a “tuning from above” strategy
for a 1123 · 224 ensemble at 𝑀phys

𝜋 on 28 LUMI-G nodes on the finest (0), intermediate (1) and coarsest (2)
levels of the MG aggregation hierarchy.

example of such as set of initial parameters, increments and maximum number of tuning iterations
for each 𝑝ℓ

𝑖
is shown in table 3 for a 1123 ·224 ensemble tuned on 28 LUMI-G nodes. The evolution

of the corresponding run is shown in fig. 3 in which the top two panels show the history of the
number of outer solver iterations and the time-to-solution, respectively, and the other panels show
the evolution of the {𝑝ℓ

𝑖
}. Dashed vertical lines indicate when the gauge configuration is switched

and the time-to-solution evolves from around 36 seconds to between seven and ten seconds.

The other strategy, termed “tuning from below”, aims instead to increase the number of coarse-
grid iterations as little as possible and to lower the tolerances as little as necessary starting from low
iteration limits and lax tolerances. The increments are thus positive for the former and negative for
the latter as given in table 4 with the corresponding evolution shown in fig. 4 from non-convergence
(46 seconds at 600 iterations) down to around seven seconds. In both strategies the search direction
for 𝜇ℓ is chosen to be positive because it was found that this is more reliable.
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Figure 3: Tuning history us-
ing the “tuning from above”
strategy for a 1123 · 224 en-
semble at 𝑀phys

𝜋 on 28 LUMI-
G nodes starting from the pa-
rameters in table 3. The
top panels show the number
of outer solver iterations and
the time-to-solution while the
lower panels show the dif-
ferent parameter values with
colours and line types indi-
cating the MG level. The
dashed vertical lines indicate
the switching of gauge config-
urations.

parameter symbol lvl 0 lvl 1 lvl 2
mg-mu-factor 𝜇ℓ 1.0 , 0.125 , 10 1.0 , 0.25 , 10 30.0 , 5.0 , 20
mg-coarse-solver-tol 𝑟ℓ – , – , 0 0.55 , -0.10 , 10 0.55 , -0.10 , 10
mg-coarse-solver-maxiter 𝑛ℓ – , – , 0 5 , 5 , 10 5 , 5 , 10
mg-nu-post 𝜈

post
ℓ

1 , 2 , 4 1 , 2 , 4 1 , 2 , 4
mg-nu-pre 𝜈

pre
ℓ

1 , 2 , 4 1 , 2 , 4 1 , 2 , 4
mg-smoother-tol 𝑟𝑠

ℓ
0.55 , -0.10 , 5 0.55, -0.10 , 5 0.55 , -0.10 , 5

mg-omega 𝜔ℓ 0.85 , 0.05 , 4 0.85 , 0.05 , 4 0.85 , 0.05 , 4
Table 4: Initial parameters, increments and maximum number of steps in a “tuning from below” strategy
for a 1123 · 224 ensemble at 𝑀phys

𝜋 on 28 LUMI-G nodes on the finest (0), intermediate (1) and coarsest (2)
levels of the MG aggregation hierarchy.

5. Conclusion and Outlook

We have presented a simple approach for semi-automatically tuning a subset of the algorithmic
parameters of the QUDA MG solver from within tmLQCD. With sensible starting parameters the
tuning procedure is seen to converge in a few hundred inversions to an efficient MG setup even
starting from non-convergence. We have so far found the autotuner to be quite useful when moving
from one machine to another or when the domain decomposition is changed. This applies to both
the HMC and measurement campaigns as it can also fine-tune MG setups with coarse-grid deflation.

It is currently not integrated into the HMC and thus relies on first generating a small number of
reasonably thermalised gauge configurations less efficiently and then fine-tuning the MG setup as
the simulation evolves. The results currently also have to be manually transcribed into input files for
production runs such that tighter integration with the tmLQCD solver driver would be a welcome
quality-of-life improvement, as would support for automatically tuning parameters such as block
sizes, which require (part of) the setup to be regenerated. Finally, an integration into the QUDA

7
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Figure 4: Tuning history us-
ing the “tuning from below”
strategy for a 1123 · 224 en-
semble at 𝑀phys

𝜋 on 28 LUMI-
G nodes starting from the pa-
rameters in table 4. The
top panels show the number
of outer solver iterations and
the time-to-solution while the
lower panels show the dif-
ferent parameter values with
colours and line types indi-
cating the MG level. The
dashed vertical lines indicate
the switching of gauge config-
urations.

library could be useful for the wider community but the parameter input and output formats would
need to be well-designed and the performance of the autotuner for other fermion discretisations
would need to be studied.
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