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1. Introduction
The muon anomalous magnetic moment, aµ = (g − 2)µ/2 where g is the gyromagnetic ratio,

has historically attracted much attention as a potential place to discover new physics [1]. The
apparent tension between theory and experiment that for long had persisted is now questioned,
given recent years’ progress in e.g. lattice quantum chromodynamics (QCD) [2, 3]. It is important
to understand the origin of the issue, and also for additional lattice QCD calculations to predict the
hadronic vacuum polarisation (HVP) contribution to aµ including isospin-breaking effects1.

Isospin-breaking effects arising from non-degenerate light-quark masses and electromagnetism
typically enter as per cent level corrections, meaning that they have to be included for precision
goals beyond that. The long-range nature of the electromagnetic effects forbids charged states
in finite-volume spacetimes with periodic boundary conditions [4]. This underlying problem
is related to Gauss’ law, the absence of a mass gap in quantum electrodynamics (QED) and
photon zero-momentum modes [4]. However, the issue can be circumvented by defining finite-
volume prescriptions for QED, such as QEDL and infrared-improvement schemes [4–7], QEDC [8],
QEDM [9] and QED∞ [10, 11].

For QEDL and QEDC, there generally are finite-volume effects (FVEs) scaling as inverse powers
of the spatial volume extent, 1/L. To extract physical predictions from lattice data, it is often useful
to analytically subtract FVEs determined using effective field theory techniques [5–7, 12–15] and
fit the residual volume-dependence from the numerical data. For the HVP, it was in Ref. [14]
shown using pointlike scalar QEDL that the leading effects start at order 1/L3, as expected from
the neutrality of the current [16]. Moreover, Ref. [14] argued from the analytical properties of
the hadronic light-by-light tensor [17, 18] that the internal structure of the pion does not alter the
cancellation at order 1/L2. In this talk, we take the first steps to determine the leading structure-
dependent FVEs for the HVP in QEDL, arising at order 1/L3 in the large-volume expansion.

2. Structure dependence in finite-volume effects
Let us consider an observable O(L) in lattice QCD+QED. We will neglect finite-time effects

and only consider continuous Euclidean spacetime geometries R × L3. The FVEs are given by
∆O(L) = O(L) − O(∞). The volume dependence can be obtained from a skeleton expansion of the
underlying correlation function, which will generate a set of Feynman diagrams with one-particle
irreducible vertex functions that depend on physical particle properties such as masses, charges and
structure in terms of form factors [15].2 At leading order in QED, i.e. order e2, diagrams with
virtual QED corrections will contain one photon, and consequently ∆O(L) can be written

∆O(L) =

{
1
L3

∑
k,0

−

∫
d3k
(2π)3

} ∫
dk0

2π
fO(k0, k)
k2

0 + k2
, (1)

where the photon momentum k = (k0, k) has been introduced. Our choice of QEDL here is
manifested in terms of the absence of k = 0 in the sum. The function fO(k0, k) depends on the
observable O and in particular the physical properties of the particles in the process. One should
further note that fO(k0, k) can contain analytical structure in k0 as well, in particular poles from
intermediate particles propagating and branch-cuts from form factors. Assuming that there are no

1There were several talks about this at the conference.
2For an alternative but equivalent procedure, see the talk [19] at this conference.
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infrared divergences in O or external spatial momenta, in a large-L expansion the quantity ∆O(L)
takes the form [6, 7, 15]

∆O(L) =
c2 A2

mπL
+

c1 A1

(mπL)2
+

c0 A0

(mπL)3
+ . . . . (2)

Here exponentially suppressed terms e−mπL as well as power-suppressed effects of order 1/(mπL)4

have been neglected. The cj in the numerators are dimensionless finite-volume coefficients defined
e.g. in Refs. [5, 15]. The Aj contain the physics, in particular structure. It was observed in Ref. [15]
that A0 contains structure-dependent contributions associated to branch-cuts in the underlying
correlation function. These cuts are difficult to estimate, which means that it is challenging to
subtract ∆O(L) in analyses of lattice data beyond order 1/(mπL)2, see e.g. Refs. [6, 7, 15, 20]. As
will be discussed below, for the HVP the expansion starts at order 1/(mπL)3, meaning that unless
one pins down the structure-dependence and cuts, the full leading correction cannot be subtracted.

3. Hadronic vacuum polarisation
The HVP is defined as the vector-vector 2-point function

Πµν(q) =
∫

d4x eiq ·x 〈0| T
[
Jµ(x)J†ν (0)

]
|0 〉 , (3)

where Jµ(x) is the electromagnetic current and q = (q0, ®q) is an external momentum. In the
following, we will consider the kinematical setting q = (q0, 0) with q2 > 0 in Euclidean space.
From the Ward-Takahashi identity qµΠµν = 0 it follows thatΠµν(q2) is transverse, namelyΠµν(q2) =(
qµqν − q2δµν

)
Π(q2). We are interested in the subtracted and hence ultraviolet finite quantity

Π̂(q2) = Π(q2) − Π(0) =
1

3q2
0

3∑
j=1

(
Πj j(q2) − Πj j(0)

)
. (4)

The corresponding FVEs are then given by3 ∆Π̂(q2, L) = Π̂(q2, L) − Π̂(q2,∞). At order e2, there
are 12 diagrammatic topologies contributing, here shown in Fig. 1, but in practice only 7 are
independent (A, B, E , C, T , S and X). Separated into diagrams, we have

∆Π̂(q2, L) = ∆Π̂A(q2, L) + ∆Π̂B(q2, L) + 2∆Π̂E (q2, L) + 4∆Π̂C(q2, L) + 2∆Π̂T (q2, L)

+ ∆Π̂S(q2, L) + ∆Π̂X(q2, L) . (5)

The vertices in the Feynman diagrams of Fig. 1 correspond to the structure-dependent irreducible
vertex functions obtained from a skeleton expansion of the correlation function in Eq. (3). These
all contain two pions and in addition one or two photons, which we respectively denote Γµ(p, k) and
Γµν(p, k, q) for incoming pion momentum p, incoming photon momentum k and outgoing photon
momentum q. The form-factor decompositions of the vertex functions are known from virtual
Compton scattering [21], and given by

Γµν(p, k, q) = 2δµν[1 − F(k2) − F(q2)] − 2 kµkν
1 − F(k2)

k2 − 2 qµqν
1 − F(q2)

q2 + ΓT
µν(p, k, q) .

Γµ(p, k) = (2p + k)µ F(k2) + kµ
(p + k)2 − p2

k2 [1 − F(k2)] , (6)

3Although this choice differs from the time-momentum representation approach typically employed in lattice calcula-
tions of the HVP [1], the FVEs can be used when integrating ∆Π̂(q2, L) with the appropriate kernel to get the contribution
to aµ .
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(A) (B) (E1) (E2)

(C1) (C2) (C3) (C4)

(T1) (T2) (S) (X)

Figure 1: The 12 diagrams contributing at order e2.

Here F(k2) is the electromagnetic form factor of the pion, with F(0) = 1 being the charge and
F ′(0) = 〈r2

π〉/6 proportional to the charge radius. The function ΓT
µν(p, k, q) is transverse with respect

to the photon momenta, i.e. kµΓT
µν(p, k, q) = −qνΓT

µν(p, k, q) = 0, and is purely structure dependent.
There are 5 form factors in this transverse quantity [21] G1, G2, ..., G5, each being a function of k ·q,
k2 + q2, k2 − q2, (k + q) · (2p+ k − q). Physically these are e.g. related to the pion electromagnetic
polarisabilities ᾱ and β̄. For brevity, we refrain from writing down the whole expression which can
be obtained from section IV of Ref. [21].4 The pointlike scalar QED calculation in Ref. [14] can
be obtained from these vertex functions through the limit F(k2) = F(q2) = 1 and ΓT

µν(p, k, q) = 0.
Having thus defined the structure-dependent vertex functions, we may proceed to evaluate the

respective contributions ∆Π̂U (q2, L). Since these diagrams have two loops and the pions are also
in finite-volume, ∆Π̂U (q2, L) takes the form

∆Π̂U =

(
1
L3

∑
k,0

1
L3

∑̀
−

∫
d3k
(2π)3

∫
d3`

(2π)3

) ∫
dk0

2π
d`0
2π
π̂U

(
q2

0, k, `
)
. (7)

Here ` = (`0, `) is the pion momentum, and π̂U
(
q2

0, k, `
)

is the integrand of Feynman diagram U in
Fig. 1. From the kinematical choice q2 > 0, there are no kinematical singularities in the integrand
associated to the pions, and we may therefore replace the sum over ` with an integral, which is
valid up to corrections exponentially suppressed with the volume [14]. We thus have the simple
sum-integral difference over the photon momentum as in Eq. (1), i.e.

∆Π̂U (q2, L) =

(
1
L3

∑
k,0

−

∫
d3k
(2π)3

) ∫
d3`

(2π)3

∫
dk0

2π
d`0
2π
π̂U

(
q2

0, k, `
)
+ . . . . (8)

As examples of integrands, we have diagrams E and X ,

π̂E

(
q2

0, k, `
)
=

1
3q2

0

{
Γj(` − q, q) Γµ(`, k)Γµ(k + `,−k) Γj(`,−q)

k2 [`2 + m2
π]

2 [(k + `)2 + m2
π] [(q − `)2 + m2

π]

}
q

, (9)

π̂X

(
q2

0, k, `
)
=

1
3q2

0

{
Γj(` − q, q) Γµ(`, k)Γµ(k + `,−q) Γj(` + k − q,−k)

k2 [`2 + m2
π] [(k + `)2 + m2

π] [(q − `)2 + m2
π] [(q − k − `)2 + m2

π]

}
q

. (10)

4Eq. (6) only depends on on-shell information, which is a choice since ∆Π̂(q2, L) only can depend on physical
quantities. Consequently, it would be independent of any off-shellness in the form factors [12, 13, 15], as can be
understood from the equivalence between the skeleton expansion and on-shell approaches such as in the talk [19].
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Here the subscript q indicates that whatever is in the curly brackets has to have a subtraction at
q2 = 0 in accordance with Eq. (4).

In the pointlike scalar QED limit, one should find [14]

∆Π̂(q2)
point
=

c0

(mπL)3

(
16
3
Ω0,3 +

5
3
Ω2,2 −

40
9
Ω2,3 +

3
8
Ω4,1 −

7
6
Ω4,2 −

8
9
Ω4,3

)
. (11)

where the integrals Ωi, j = Ωi, j(q2
0/m2

π) are defined in Ref. [14]. Diagram by diagram there are
also 1/(mπL)2 terms, but these cancel in the full sum due to the neutrality of the currents in the
HVP [14, 16]. As was also argued in Refs. [14, 16], even in the structure-dependent case we should
see that ∆Π̂(q2) starts at order 1/(mπL)3. We briefly note that in QEDr [6, 7] and QEDC [8] the
leading effects start at order 1/(mπL)4, since the equivalent of c0 there is zero.

4. Towards an evaluation of the finite-volume effects
Next we discuss the prospects of evaluating the leading FVEs including structure dependence

in ∆Π̂(q2, L), and report on some preliminary findings. It should be noted that the k0 and `0
integrals in Eq. (8) pick up all the analytical structure in the integrand π̂U

(
q2

0, k, `
)
, i.e. both pole

and branch-cuts. We may then separate ∆Π̂(q2, L) into pure pole contributions and a remainder,

∆Π̂(q2, L) = ∆polesΠ̂(q2, L) + ∆remΠ̂(q2, L) . (12)

The pole contributions can be directly evaluated from the singularities in k0 and `0 from the
propagators in the integrands π̂U

(
q2

0, k, `
)
. Doing this and a large-volume expansion one then

obtains e.g., for the sum of diagrams E and X ,

∆polesΠ̂E+X(q2, L) =
c1

24πz (mπL)2

{
4
[
4z2
Ω1,3 − 7z2

Ω3,3 + 3z2
Ω5,3 − 96zΩ1,3

+ 40zΩ3,3 + 8(7z − 66)Ω−1,3 + 288Ω−3,3 + 240Ω1,3

]
F(q2

0)
2

− 3
[
6z3
Ω3,3 − 11z3

Ω5,3 + 5z3
Ω7,3 + 72z2

Ω1,3 − 132z2
Ω3,3 + 60z2

Ω5,3

− 528zΩ1,3 + 240zΩ3,3 + 32(9z − 22)Ω−1,3 + 384Ω−3,3 + 320Ω1,3

] }
+

c0 C
poles
E+X

(mπL)3
. (13)

Here z = q2
0/m2

π . We have left out an explicit expression of the structure dependent Cpoles
E+X due to its

length. By setting F(q2
0) = 1 and F ′(0) = 0 for the 1/(mπL)3 contribution we regain the pointlike

scalar QED result from Ref. [14]. One may proceed in this way to evaluate the full ∆polesΠ̂(q2, L)
through order 1/(mπL)3, which in the pointlike limit should give back Eq. (11).

The issue to evaluate ∆remΠ̂(q2, L) remains, and is crucial since it is structure-dependent as
well and can give cancellations with ∆polesΠ̂(q2, L), thus altering the size of ∆Π̂(q2, L). To obtain
∆remΠ̂(q2, L) we propose to exploit the connection between the HVP and the hadronic light-by-light
tensor Πµνρσ(q1, q2, q3, q4) in forward kinematics,

Π̂(q2) =
1

3q2
0

∫
d4k
(2π)4

Π̂j jµµ(q,−q, k,−k)
k2 . (14)
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In Ref. [22] the above relation is rewritten in terms of a dispersive sum rule for γ∗γ∗-fusion
cross sections. Moreover, in Refs. [17, 18] it was proven that the two-pion contribution in the
dispersive representation of the hadronic light-by-light is in one-to-one correspondence with the
Feynman diagram approach involving two pions (equivalent to the approach here). The proposed
way forward is therefore to evaluate ∆polesΠ̂(q2, L) using the form-factor decompositions in Eq. (6),
and ∆remΠ̂(q2, L) by connecting it to dispersion theory for the hadronic light-by-light.

5. Conclusions
We have discussed the prospects of evaluating the leading FVEs to the HVP in QEDL. This is an

extension of Ref. [14] to include also structure dependence through form factors as in Ref. [15]. The
work is relevant for evaulation of the leading isospin-breaking corrections to the HVP contribution
to the muon anomalous magnetic moment.
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