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1. Project Motivations and Specifications

The primary aim of this ongoing project is to calculate the vector form factor 𝑓+(𝑞2) for
the 𝐵 → 𝜋 meson decay. This form factor is related to its differential decay rate and the
Cabibbo–Kobayashi–Maskawa (CKM) matrix element |𝑉𝑢𝑏 | via the following equation [1]:

𝑑Γ

𝑑𝑞2 =
𝐺2
𝐹

24𝜋3 𝑝
3
𝜋 × |𝑉𝑢𝑏 |2 × | 𝑓+(𝑞2) |2, (1)

where 𝐺𝐹 is the Fermi constant, and 𝑝𝜋 is the magnitude of the pion’s three-momentum in the 𝐵
meson’s rest frame. This CKM matrix element𝑉𝑢𝑏 is similarly present in the 𝐵𝑠 → 𝐾 meson decay
where the heavy meson contains a strange spectator quark.

In this project we use the Highly Improved Staggered Quark (HISQ) formalism [2] on the
MILC 𝑁 𝑓 = 2 + 1 + 1 gluon field ensembles [3, 4]. We follow similar methods found in [5, 6] to
perform this new line of form factor calculations. Our use of the heavy-HISQ approach dictates
that meson decays are simulated on the lattice using a generic heavy meson 𝐻. This generic heavy
meson contains a generic heavy quark ℎ, whose mass is varied. In all gluon field ensembles used
in this work, the smallest simulated heavy quark’s mass is tuned such that it is equal to the physical
charm quark mass. For these reasons, our data sets can be used to calculate form factors for the
following four meson decays 𝐵 → 𝜋, 𝐵𝑠 → 𝐾 , 𝐷 → 𝜋, and 𝐷𝑠 → 𝐾 . In the case of 𝐷 → 𝜋 and
𝐷𝑠 → 𝐾 , the associated CKM matrix element is 𝑉𝑐𝑑 . Table 1 gives a partial description of the
current1 gluon field ensembles used in this project.

The Particle Data Group’s (PDG) current listed values for these matrix elements are [7]:
|𝑉𝑐𝑑 | = 0.221 ± 0.004, |𝑉𝑢𝑏 | = (3.82 ± 0.20) × 10−3. However this given value for |𝑉𝑢𝑏 | is a
weighted average from both inclusive and exclusive 𝐵 decays. The PDG lists an exclusive value for
|𝑉𝑢𝑏 | derived only from lattice QCD and experimental decay rates. Ultimately it is this exclusively
determined value of |𝑉𝑢𝑏 | we aim to refine through this work.

1We are actively producing data for four more ensembles to use in this work. These ensembles have coarser lattice
spacings with 𝑎 ≈ 0.12 fm, 0.15 fm, two of which include physical light quark masses.

Set ≈ 𝑎(fm) 𝑎𝑚𝑙 𝑁3
𝑥 × 𝑁𝑡 𝑎𝑚ℎ 𝑝max

𝜋,𝐾
(MeV) 𝑇

f-5 0.09 0.0074 323 × 96 0.450, 0.55, 0.675, 0.8 311 15, 18, 21, 24
f-phys 0.09 0.00120 643 × 96 0.433, 0.555, 0.678, 0.8 330 15, 18, 21, 24
sf-5 0.06 0.0048 483 × 144 0.274, 0.5, 0.65, 0.8 622 22, 25, 28, 31

sf-phys 0.06 0.0008 963 × 192 0.2585, 0.5, 0.65, 0.8 648 22, 25, 28, 31
uf-5 0.04 0.00316 643 × 192 0.194, 0.4, 0.6, 0.8 583 29, 34, 39, 44

Table 1: Gluon field ensembles used in this work. Data listed is, in order: gluon field ensemble set name,
approximate lattice spacing, the mass of the light quark in lattice units 𝑎𝑚𝑙 , lattice spacial and temporal
extent 𝑁𝑥 and 𝑁𝑡 , the heavy quark masses simulated on each ensemble in lattice units 𝑎𝑚ℎ, the maximum
3-momentum of the daughter meson momentum 𝑝max

𝜋,𝐾
simulated on each ensemble in MeV, and the mother-

daughter separation widths 𝑇 simulated for each ensemble.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
6
2

Towards more accurate 𝐵 (𝑠) → 𝜋(𝐾) and 𝐷 (𝑠) → 𝜋(𝐾) form factors Logan Roberts

2. Fit Procedure and Refinement

We perform global (one fit per ensemble) correlator fits to two and three point correlators
generated on the MILC ensembles. The resulting fit parameters are then used to calculate form
factor results at simulated values of 𝑞2. We then use the modified z-expansion [8] to extrapolate
our form factor results to the continuum limit, physical light and heavy quark masses, and over the
entire 𝑞2 range. This fitting procedure makes extensive use of the gvar, lsqfit, and corrfitter python
libraries, which are documented in [9–11].

2.1 Correlator and Form Factor Equations

We fit two and three point correlators 𝐶2 and 𝐶3 to equations 2 and 3, using 𝐻 → 𝜋 as an
example. 𝐻𝑠 → 𝐾 correlators are fit similarly.

𝐶 𝜋2 (𝑡) =
𝑁exp−1∑︁
𝑖=0

[
|𝐴𝜋,𝑛
𝑖

|2(𝑒−𝐸
𝜋,𝑛
𝑖

𝑡 + 𝑒−𝐸
𝜋,𝑛
𝑖

(𝑁𝑡−𝑡 ) ) − (−1)𝑡 |𝐴𝜋,𝑜
𝑖

|2(𝑒−𝐸
𝜋,𝑜
𝑖

𝑡 + 𝑒−𝐸
𝜋,𝑜
𝑖

(𝑁𝑡−𝑡 )
]

(2)

𝐶
𝜋,𝐻

3 (𝑡, 𝑇) =
𝑁exp−1∑︁
𝑖, 𝑗=0

[
𝐴
𝜋,𝑛
𝑖
𝐽𝑛𝑛𝑖 𝑗 𝐴

𝐻,𝑛
𝑗
𝑒−𝐸

𝜋,𝑛
𝑖

𝑡𝑒
−𝐸𝐻,𝑛

𝑗
(𝑇−𝑡 )

− (−1) (𝑇−𝑡 )𝐴𝜋,𝑛
𝑖
𝐽𝑛𝑜𝑖 𝑗 𝐴

𝐻,𝑜
𝑗
𝑒−𝐸

𝜋,𝑛
𝑖

𝑡𝑒
−𝐸𝐻,𝑜

𝑗
(𝑇−𝑡 )

− (−1)𝑡𝐴𝜋,𝑜
𝑖
𝐽𝑜𝑛𝑖 𝑗 𝐴

𝐻,𝑛
𝑗
𝑒−𝐸

𝜋,𝑜
𝑖

𝑡𝑒
−𝐸𝐻,𝑛

𝑗
(𝑇−𝑡 )

+ (−1)𝑇𝐴𝜋,𝑜
𝑖
𝐽𝑜𝑜𝑖 𝑗 𝐴

𝐻,𝑜
𝑗
𝑒−𝐸

𝜋,𝑜
𝑖

𝑡𝑒
−𝐸𝐻,𝑜

𝑗
(𝑇−𝑡 )

]
(3)

Here 𝑁exp is the number of states in the fit, 𝑁𝑡 is the temporal lattice length, and 𝐴, 𝐸 denote various
meson amplitudes and energies. The superscripts o and n denote an oscillating or a non-oscillating
state respectively. Finally of the various three point scalar, vector, and tensor current insertion
amplitudes 𝐽 ∈ {𝑆,𝑉, 𝑇}, 𝐽𝑛𝑛00 is the ground state three point amplitude we use to calculate the
corresponding lattice matrix element,

⟨𝜋 |𝐽latt |𝐻⟩ = 2𝑍disc
√︁
𝑀𝐻𝐸𝜋 × 𝐽𝑛𝑛00 . (4)

With the lattice matrix element we then calculate the form factors 𝑓0(𝑞2), 𝑓+(𝑞2), 𝑓𝑇 (𝑞2, 𝜇):

Scalar: ⟨𝜋 |𝑆latt |𝐻⟩ = 𝑓0(𝑞2) ×
𝑀2
𝐻
− 𝑀2

𝜋

𝑚ℎ − 𝑚𝑙
, (5)

Vector: 𝑍𝑉 ⟨𝜋 |𝑉 𝜇latt |𝐻̂⟩ = 𝑓+(𝑞2)
(
𝑝
𝜇

𝐻
+ 𝑝𝜇𝜋 −

𝑀2
𝐻
− 𝑀2

𝜋

𝑞2 𝑞𝜇

)
+ 𝑓0(𝑞2)

𝑀2
𝐻
− 𝑀2

𝜋

𝑞2 𝑞𝜇, (6)

Tensor: 𝑍𝑇 (𝜇)⟨𝜋̂ |𝑇 𝑘0
latt |𝐻̂⟩ = 𝑓𝑇 (𝑞2, 𝜇) × 2𝑖𝑀𝐻 𝑝

𝑘
𝜋

𝑀2
𝐻
+ 𝑀2

𝜋

. (7)

In equation 6 the superscript 𝜇 ∈ {0, 1, 2, 3} denotes a direction on the euclidean lattice (𝑡, 𝑥, 𝑦, 𝑧).
We choose the spacial lattice direction 𝜇 = 𝑘 = 1 for the tensor matrix element. Our use of local
current operators requires local non-Goldstone pseudoscalar mesons in some cases, denoted by the
(^) notation. The renormalization terms 𝑍disc, 𝑍𝑉 , and 𝑍𝑇 (𝜇) are calculated in [12–15], where in
this context 𝜇 is a heavy quark mass dependent renormalization scale.
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2.2 Addressing Fitting Obstacles

The large amount of correlator data for this project presents a challenge: global correlator fits
often exceed wall clock limits. For 𝐻 → 𝜋, per ensemble, we fit over several variable combinations.
These include four heavy quark masses 𝑎𝑚ℎ, four spin-taste copies of 𝐻 from using local current
operators, and five "twists" 𝜃which fix the daughter meson three momentum2 by

√
3𝜋×𝜃 = 𝑎𝑝𝜋×𝑁𝑥 .

Additionally there are four different mother-daughter meson separation widths 𝑇 , and four three
point currents: scalar, temporal vector, spacial vector3, and tensor. There is a similarly sized
correlator data set for 𝐻𝑠 → 𝐾 with these same variable combinations.

It is impractical to perform a simultaneous fit to all the correlators for an ensemble. We
therefore perform a chained fit [10] with links determined by examining the correlations among fit
parameters. Figure 1 gives a representative sample of what a fit parameter correlation matrix looks
like for a (non-global) parameter subset. From figures such as this we determine which groups of
fit parameters have the largest and smallest correlations and split the global data set into smaller,
more manageable subsets. If two subsets have relatively small statistical correlations with another,
we treat them as separate links in the chained fit to all the data. This preserves correlations between
the various subsets of data.

From figure 1, the dominant behavior we observe is that the fit parameters for the four currents
split into two subsets. The scalar current parameters tend to correlate more with the temporal
vector current parameters, while the spacial vector current parameters tend to correlate more with
the tensor current parameters. This categorization has correlations that are consistently higher than
any alternate grouping of fit parameters, including by different heavy quark masses and twists.

Another method we can use to reduce time needed is to adjust the number of exponentials in our
fit 𝑁exp, and to adjust the 𝑡/𝑎 domain considered for a given set of correlators. There are statistical
trade-offs in changing these variables; figure 2 tracks the the change of a sample fit posterior with
different values of 𝑁exp and 𝑡min/𝑎. In testing we find that a value of 𝑁exp = 4 is more than adequate
to capture the higher order behavior in our correlator data in this case.

2.3 Priors and Bayesian Fitting

Following the methodology first outlined in [17], we provide a priori, or prior estimates for
posterior fit parameter outputs, which augment the standard 𝜒2 fitting procedure by equation 8.

Gaussian priors are specified by a mean and standard deviation (or equivalently, the central
value and uncertainty) of a given energy 𝐸𝑖 or amplitude 𝐴𝑖 , 𝐽𝑖[17]. Following from equations 5
and 6 in [17], we augment the normal 𝜒2 fitting procedure where 𝜒2 → 𝜒2

aug = 𝜒2 + 𝜒2
prior. We can

denote the prior central value and uncertainty of a given fit parameter 𝑃𝑖 as 𝑃̃𝑖 + 𝜎̃𝑃𝑖 . With this we
define 𝜒2

prior as

𝜒2
prior =

∑︁
𝑖

(𝐸𝑖 − 𝐸̃𝑖)2

(𝜎̃𝐸𝑖
)2 +

∑︁
𝑖

(𝐴𝑖 − 𝐴̃𝑖)2

(𝜎̃𝐴𝑖
)2 +

∑︁
𝑖

(𝐽𝑖 − 𝐽𝑖)2

(𝜎̃𝐽𝑖 )2 . (8)

The practical methods we use to determine the priors for these fit parameters fall into two general
categories: manual and automated. Effective mass 𝑎𝑀eff(𝑡) and amplitude 𝐴eff(𝑡), 𝐽eff(𝑡, 𝑇) plots

2The magnitude of the meson’s momentum is equal in all three spacial dimensions, |𝑝1 | = |𝑝2 | = |𝑝3 |.
3We simulate the vector current component in the temporal direction 𝜇 = 0 and the spacial directions 𝑘 = 𝜇. The

form factor results derived from either choice have complementary uncertainties across the full 𝑞2 range [16].
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Figure 1: Representative sample three point amplitude correlation matrix for 𝐻 → 𝜋 on the f-5 ensemble.
Each row and column denotes a distinct fit parameter. The amplitude tags 𝑆𝑉𝑛𝑛, 𝑇𝑉𝑛𝑛, 𝑉𝑉𝑛𝑛, and 𝑋𝑉𝑛𝑛
denote a scalar, tensor, temporal vector, or spacial vector current respectively. Parameters shown cover heavy
quark masses of 𝑎𝑚ℎ = 0.450, 0.55, and twists 𝜃 = 0.0, 0.4281.

(such as figure 3) can be constructed via equations 9, 10, and 11 from two-point correlators 𝐶2(𝑡)
and three-point correlators 𝐶3(𝑡, 𝑇). So long as the correlator data from which these effective mass
and amplitude plots are constructed are not too noisy, ground state behavior can be visually (which
is to say, manually) differentiated from higher order and oscillating states.

𝑎𝑀eff(𝑡) =
1
2

cosh−1
(
𝐶2(𝑡 − 2) + 𝐶2(𝑡 + 2)

2𝐶2(𝑡)

)
(9)

𝐴eff(𝑡) =
√︂

𝐶2(𝑡)
𝑒−𝑀eff𝑡 + 𝑒−𝑀eff (𝑁𝑡−𝑡 )

(10)

𝐽eff(𝑡, 𝑇) = 𝐶3(𝑡, 𝑇)
exp[𝑀 𝜋,𝐾

eff 𝑡 + 𝑀𝐻(𝑠)
eff (𝑇 − 𝑡)]

𝐴
𝜋,𝐾

eff × 𝐴𝐻(𝑠)
eff

(11)

Meanwhile, some effective mass and amplitude plots are best determined algorithmically. In
such cases where a ground state plateau is sufficiently distinct from non-ground state signal, a

5
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Figure 2: Sample 𝑡min and 𝑁exp plot on the sf-phys ensemble. The mother meson’s rest mass, which contains
a heavy valence quark ℎ of mass 𝑎𝑚ℎ = 0.2585, is the fit posterior whose central value and uncertainty is
tracked with changing values for 𝑡min and 𝑁exp.

Figure 3: f-5 ensemble 𝐻 → 𝜋 scalar current three-point effective amplitude plot for all mass 𝑎𝑚ℎ and twist
𝜃 options. Different heavy quark mass options for a given 𝑡/𝑎 are offset along x-axis for visual aid. The five
different twists are represented by the five, typically vertically separated, clusters of 𝐽eff (𝑡, 𝑇) for a single 𝑡/𝑎.

6
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Figure 4: f-5 ensemble 𝐻 → 𝜋 prior vs. posterior sample comparison plot. Data shown is for a three point
temporal vector current with a heavy quark mass of 𝑎𝑚ℎ = 0.675, a daughter meson twist of 𝜃 = 1.1282,
and a mother-daughter separation width of 𝑇 = 24. A reconstructed effective amplitude (blue) as a function
of 𝑡/𝑎 is built from reconstructed correlators, which are built from fit two point and three point energies
and amplitude posteriors. The original effective amplitude (red) is constructed from original unprocessed
correlators. The light and dark green bands show the prior and posterior bounds on the ground state amplitude
𝑉00
𝑛𝑛 fit parameter associated with the effective amplitude.

function can take the rolling average of adjacent and consecutive 𝑎𝑀eff(𝑡), 𝐴eff(𝑡), or 𝐽eff(𝑡, 𝑇)
values. The central value of these ground state mass or amplitude priors can then be automatically
determined from a distinct 𝑡/𝑎 where the change in this rolling average is minimized.

Irrespective of methodology, we do not use priors as strict constraints on ground state fit
parameters. As a guiding principle, we set a prior’s uncertainty conservatively, such that its
magnitude is no less than ten times its corresponding posterior’s uncertainty. Figure 4 gives a
typical case of the difference in uncertainty between a prior and its posterior. We take exception
to this principle when we have additional physics information to which we expect the standard
model-derived correlator data to adhere. In such cases, physics based algorithms are used to assign
values to these priors. A dispersion relation for example is augmented with known discretization
effects and used to set certain pion and kaon priors.

Finally, in the cases where we cannot easily use the previous methods to determine priors
(oscillating excited three point amplitudes for example), we utilize Gaussian Bayes Factor (GBF)
optimization. More information on the Bayes factor can be found in [18, 19] but in short: a
group of prior standard deviations are tuned to maximize a fit’s GBF ensuring that the prior neither

7
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Figure 5: Preliminary 𝐻 → 𝜋 form factor results for all current insertions on the f-5 ensemble. Results are
shown for all heavy quark masses 𝑎𝑚ℎ and currents. Note that 𝑎𝑚ℎ = 0.450 corresponds to the tuned charm
quark mass.

over-constrains nor under-constrains the fit [20]. A prior is GBF optimized by performing a test fit,
and recording the fit’s GBF, or more commonly log(GBF). Then, the prior’s standard deviation is
slightly adjusted. The fit is performed once more and the subsequent change (if any) of its GBF is
recorded. This process is repeated until a clear maximum GBF is resolvable.

3. Preliminary Results and Project Outlook

Figure 4 compares a sample three point effective amplitude against its reconstructed effective
amplitude. This reconstructed effective amplitude is built using the same procedure as equation 11,
but it uses a different three point correlator: one built from fit posteriors via equation 3. This figure
demonstrates how successfully we can capture and model higher order, oscillating, and ground state
behavior with our fitting procedure. Figure 5 shows preliminary 𝐻 → 𝜋 form factor plots for all
four currents on the f-5 ensemble.

The current focus of this project is to finalize our choice of global ensemble fitting methodology.
Upon the completion of this task, we will convert fit posterior ground state amplitudes to form factor
results, and then perform a modified z-expansion to extrapolate to physical quark masses, over the
full kinematic range, and to the continuum limit (examples of which can be found in [6, 16, 21, 22]).
Based on the impressive precision of the 𝐵 → 𝐾 and 𝐷 → 𝐾 form factors obtained using
the heavy HISQ apprach in [6], we anticipate similar improvement here. With these finalized
𝐻(𝑠) → 𝜋(𝐾) form factor results we will then estimate values for |𝑉𝑢𝑏 | and |𝑉𝑐𝑑 |, and explore other
phenomenological implications of our improved form factors.

8
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