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1. Introduction

In the last few years the lattice QCD community has made impressive progress in increasing the
precision of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic
moment of the muon 𝑎HVP

𝜇 , reaching the few permille accuracy. The Leading Isospin Breaking
(LIB) corrections, coming from both QED and strong isospin breaking (SIB) effects, are of first
order in the small parameters 𝛼em and (𝜇𝑑 − 𝜇𝑢)/ΛQCD but relevant at the subpercent accuracy.
They have been fully computed by the BMW collaboration [1] and partly by other groups [2, 3].

In this work, we present the status of LIB effects computation by ETM Collaboration. By using the
RM123 approach [4], we focused on the electro-quenched (EQ) light, strange and charm connected
contributions, while work on the EQ disconnected and the electro-unquenched contributions is in
progress. We computed EQ contributions on two ensembles with equal lattice spacing. 𝑎 ∼ 0.08
fm, and aspect ratio, 𝑇/𝐿 = 2, but different linear size, i.e. 𝐿 ∼ 3.8 fm and 𝐿 ∼ 5.1 fm.

2. Lattice setup

We outline here the mixed action lattice setup and the RM123 expansion method we employ to
evaluate correlation functions in QCD+QED to the first order in 𝛼𝑒𝑚 and 𝜇𝑑−𝜇𝑢, using twisted mass
fermions and the ensembles produced by ETM in isospin symmetric QCD (isoQCD). We define the
QCD+QED lattice theory through the𝑈 (1) × 𝑆𝑈 (3) gauge-invariant and flavour diagonal action

𝑆QCED [𝑈, 𝐴, 𝑞 𝑓 , 𝑞 𝑓 ]=
∑︁
𝑓 =𝑢,𝑑
𝑠,𝑐

∑︁
𝑥

𝑞 𝑓 (𝑥)
{
𝛾𝜇∇̃𝜇 [𝑈, 𝐴] − 𝑖𝛾5 𝑟 𝑓

(
𝑊𝑐𝑙 [𝑈, 𝐴] + 𝑚 𝑓

cr

)
+ 𝜇 𝑓

}
𝑞 𝑓 (𝑥) , (1)

where 𝑟𝑢 = 𝑟𝑐 = 1 and 𝑟𝑑 = 𝑟𝑠 = −1, and 𝑚 𝑓
cr is the critical mass for flavour 𝑓 . We set 𝑚𝑐cr = 𝑚

𝑢
cr

and 𝑚𝑠cr = 𝑚
𝑑
cr since the shift of critical masses arises only from QED effects. Furthermore, it can

also be proved (following closely the arguments in [5]) that all physical observables of QCD+QED
can be extracted without O

(
𝑎2𝑘+1) lattice artifacts (𝑘 ∈ N) from correlators evaluated using 𝑆QCED.

On the other hand, since the action 𝑆QCED in general has a complex fermionic determinant and is
not suitable for Markov chain based simulations, we employ a mixed action lattice setup that, in
analogy to the discussion in App. A of [6], can be sketched as follows

𝑆mix = 𝑆TM
[
®𝑔0] + 𝑆ghost

[
®𝑔0] + 𝑆QCED [ ®𝑔] , (2)

where 𝑆TM
[
®𝑔0] denotes the TM isoQCD action for two pairs of maximally twisted Wilson fermions,

with the 𝑐–𝑠 pair sector being flavour non-diagonal due to its Wilson term; 𝑆ghost
[
®𝑔0] refers to

isoQCD too, but has the same flavour diagonal form as 𝑆QCED [ ®𝑔], which however carries the
QCD+QED parameters. Here the bare parameters for isoQCD and QCD+QED are denoted 1 by

®𝑔0 =

{(
𝑔0
𝑆

)2
, 0, 𝜇0

ℓ , 𝜇
0
ℓ , 𝜇

0
𝑠 , 𝜇

0
𝑐;𝑚

0
cr, 𝑚

0
cr

}
, ®𝑔 =

{
(𝑔𝑆)2 , 𝑒2, 𝜇𝑢, 𝜇𝑑 , 𝜇𝑠, 𝜇𝑐;𝑚𝑢cr, 𝑚

𝑑
cr
}
, (3)

and O(𝑎) improved results for all physical observables are expected based on the same arguments
as mentioned above. The electro-unquenched LIB corrections to isoQCD can be obtained by

1As we work in the EQ approximation we assume 𝑎 = 𝑎0 (equal lattice spacing in the two theories) with a change in
the bare strong coupling.
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ensemble 𝛽 𝑉/𝑎4 𝑎sim 𝑎𝜇ℓ 𝑎𝜇𝑠 𝑎𝜇𝑐 𝑀𝜋 (MeV) 𝑀𝜋𝐿

B48 1.778 483 · 96 0.08 0.00072 0.01825 0.2377 141 2.7
B64 1.778 643 · 128 0.08 0.00072 0.01825 0.2377 140 3.6

ensemble 𝑁U
𝑁𝜂

𝜇ℓ 3𝜇ℓ 5𝜇ℓ 7𝜇ℓ 9𝜇ℓ 𝜇𝑠 𝜇𝑐

B48 438 96 96 96 96 96 96 4
B64 417 64 64 20 8 4 64 4

Table 1: We provide the parameters of the ETMC gauge ensembles used in this work, together with the
number of configurations 𝑁U analysed and the number of stochastic sources 𝑁𝜂 employed to compute the
quark propagators at each quark mass.

evaluating the first–order expansion of the ratio of Dirac operator determinants from the actions
𝑆QCED [ ®𝑔] and 𝑆ghost

[
®𝑔0] .

In this work, we applied the RM123 method to compute LIB corrections. Indeed, since the difference
®𝑔 − ®𝑔0 is small we can expand the QCD+QED theory around the isoQCD one, up to the first–order
in 𝛼em and 𝛿𝑢𝑑 ≡ (𝜇𝑢 − 𝜇𝑑)/ΛQCD. The expectation values in QCD + QED ⟨·⟩ ®𝑔 is given by

⟨O [𝑈, 𝐴; ®𝑔]⟩ ®𝑔 = ⟨O [𝑈; ®𝑔0]⟩ ®𝑔0 + Δ ⟨O[𝑈, 𝐴; ®𝑔 ]⟩ ®𝑔0 + O
(
𝛼2

em, , 𝛿
2
𝑢𝑑 , 𝛼em𝛿𝑢𝑑

)
. (4)

where the Δ operator is defined by

Δ ⟨O⟩ ®𝑔0 =
1
2
𝑒2 𝜕 ⟨O⟩ ®𝑔

𝜕𝑒2

�����
®𝑔=®𝑔0

+
∑︁
𝑓 =𝑢,𝑑
𝑠,𝑐

(𝜇 𝑓 − 𝜇0
𝑓 )
𝜕 ⟨O⟩ ®𝑔

𝜕𝑚 𝑓

�����
®𝑔=®𝑔0

+
∑︁
𝑓 =𝑢,𝑑
𝑠,𝑐

(𝑚 𝑓
cr − 𝑚0

cr)
𝜕 ⟨O⟩ ®𝑔

𝜕𝑚
𝑓
cr

�����
®𝑔=®𝑔0

. (5)

In this work, we used two different strategies to compute the derivatives w.r.t 𝑒2 w.r.t 𝜇 𝑓 and
𝑚
𝑓
cr. Concerning derivatives w.r.t. 𝑒2 we performed a finite difference approximation of the second

derivatives, using values of 𝑒2 = 10−2, 10−3 which are small enough to makeO
(
𝑒4) in the differences

fully negligible. On the other hand, we implemented directly the scalar and pseudoscalar integrated
density operator insertions corresponding, respectively, to the derivatives w.r.t. 𝜇 𝑓 and 𝑚 𝑓

cr.

3. Counterterms determinations

In this section, we describe the determination of the counterterms needed to compute the correc-
tions to all physical observables. We will first discuss the shift of critical masses and then the
determination of physical quark mass counterterms.

To determine 𝑚𝑢cr − 𝑚0
cr and 𝑚𝑑cr − 𝑚0

cr in general we have to exploit two independent conditions,
which here we choose by requiring restoration of parity invariance [7].

�̄� (𝑡) ≡ 𝜕0
∑︁
®𝑥

〈
𝑉1

0 (𝑥)𝑃
2(0)

〉 ®𝑔 /
2
∑︁
®𝑥

〈
𝑃2(𝑥)𝑃2(0)

〉 ®𝑔
= 0 (6)

𝐶𝑆𝑃 (𝑡) ≡
∑︁
®𝑥

〈
𝑆1(𝑥)𝑃1(0)

〉 ®𝑔
= 0 , (7)
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Figure 1: Critical mass shift Δ�̄�𝑐𝑟 determinations on B48 (left panel) and B64 (right panel).

where 𝑉1
0 (𝑦) =

(
�̄�ℓ 𝛾

0 𝜏1 𝜓ℓ
)
(𝑦), 𝑃1,2(𝑦) =

(
�̄�ℓ 𝛾

5 𝜏1,2 𝜓ℓ
)
(𝑦) and 𝑆1(𝑦) =

(
�̄�ℓ 1 𝜏1 𝜓ℓ

)
(𝑦) with

𝜓ℓ = (𝑢, 𝑑)𝑇 . We recall that in isoQCD the condition of Eq. (6) is used to determine 𝑚0
cr.

Furthermore, as here we work in the EQ approximation, there is no contribution from sea quark
effects and hence one has Δ𝑚𝑑cr = (𝑒𝑑/𝑒𝑢)2 Δ𝑚𝑢cr and can define Δ�̄�𝑐𝑟 ≡

(
𝑒2
𝑢 + 𝑒2

𝑑

) (
Δ𝑚

𝑓
cr/2𝑒2

𝑓

)
(𝑒 𝑓

is the charge of the quark of flavour 𝑓 ). We then extract the critical mass shifts Δ𝑚𝑢,𝑑𝑐𝑟 by fitting the
lattice estimator Δ�̄�𝑐𝑟 namely

Δ�̄�𝑐𝑟 (𝑡) ≡ −
𝑒2
𝑢 + 𝑒2

𝑑

2
𝑒2 𝜕�̄� (𝑡 )

𝜕𝑒2[
𝑒2
𝑢
𝜕�̄� (𝑡 )
𝜕𝑚𝑢

cr
+ 𝑒2

𝑑

𝜕�̄� (𝑡 )
𝜕𝑚𝑑

cr

] (8)

to a constant ansatz in a time plateaux region that we conveniently choose as 1.0 fm ≤ 𝑡 ≤ 2.5 fm.

By applying theΔ operator to the masses𝑀𝑃 of the mesons 𝜋+,𝐾+,𝐾0 and𝐷𝑠 mesons, we determine
the shift of the bare physical masses by solving the system for Δ𝜇 𝑓 = 𝜇 𝑓 − 𝜇0

𝑓
, 𝑓 = 𝑢, 𝑑, 𝑠, 𝑐,∑︁

𝑓

Δ𝜇 𝑓
𝜕𝑀𝑃 (𝛽)
𝜕𝜇 𝑓

=
{
𝑎𝑀

exp
𝑃

− [𝑎𝑀𝑃]iso} − 𝑒2 𝜕𝑀𝑃 (𝛽)
𝜕𝑒2 −

∑︁
𝑓

Δ𝑚
𝑓
cr
𝜕𝑀𝑃 (𝛽)
𝜕𝑚𝑐𝑟 , 𝑓

, (9)

where 𝑎 = 𝑎iso is the isoQCD lattice spacing. Furthermore, we use the QED Finite Size Effects
(FSE) relation [8]

𝑀𝑃 (𝐿) − 𝑀𝑃 = − (𝑄𝑒)2𝑐

8𝜋

[
1
𝐿
+ 2
𝑀𝑃𝐿

2 +𝑂 (𝐿−3)
]

with 𝑐 = 2.837297 . . . (10)

to correct for FSE in the term [𝑎𝑀exp
𝑃

− [𝑎𝑀𝑃]iso] of Eq. (9). We define our isoQCD theory
according to the Edinburgh/FLAG consensus

𝑓𝜋 = 130.5 MeV 𝑀𝜋 = 135.0 MeV 𝑀𝐾 = 494.6 MeV 𝑀𝐷𝑠
= 1967 MeV (11)

Before presenting the results for these counterterms, some remarks are in order. The system of
Eq. (9) is understood to hold in the EQ approximation. Beyond this approximation, LIB effects
change the lattice spacing too, and a further input, such as 𝑀Ω or 𝑀𝐷0 , would be required.

The bare physical quark mass shifts Δ�̄� = (Δ𝜇𝑑 + Δ𝜇𝑢) /2, Δ𝜇𝑢𝑑 = (Δ𝜇𝑑 − Δ𝜇𝑢) /2, Δ𝜇𝑠, Δ𝜇𝑐,
as well the EQ critical mass shift Δ�̄�𝑐𝑟 (see Tab. 2) are evaluated on lattices 𝐿3𝑇 of two different
linear sizes, 𝐿 ∼ 3.8 fm (B48) and 𝐿 ∼ 5.1 fm (B64) respectively. They agree within about two
standard deviations, although the errors quoted here are merely statistical and a careful estimate of
systematic errors is deferred to future work.
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𝑎Δ�̄�𝑐𝑟 × 104 𝑎Δ�̄� × 104 𝑎Δ𝜇𝑢𝑑 × 104 𝑎Δ𝜇𝑠 × 104 𝑎Δ𝜇𝑐 × 104

B48 −64.63 ± 0.03 −0.201 ± 0.002 2.65 ± 0.03 −0.436 ± 0.006 −23.72 ± 0.06
B64 −64.71 ± 0.02 −0.196 ± 0.001 2.56 ± 0.02 −0.446 ± 0.004 −23.63 ± 0.04

Table 2: The counterterms Δ𝜇 𝑓 obtained solving for in Eq. 9. The results are shown on the two volumes,
𝐿 ∼ 3.8 fm (B48) and 𝐿 ∼ 5.1 fm (B64).

4. The LIB corrections to 𝑎𝜇

In this section, we describe how to compute the LIB corrections for the light, strange and charm
HVP contributions to the anomalous muon’s magnetic moment. As customary, we adopt the
time-momentum representation [9],

𝑎HVP
𝜇 = 2𝛼2

em

∫ ∞

0
d𝑡 𝑡2𝐾

(
𝑚𝜇𝑡

)
�̂�𝐽𝐽 (𝑡) , (12)

where 𝐾 (𝑚𝜇𝑡) is the usual analytic kernel and �̂�𝐽𝐽 (𝑡) is the renormalized two-point vector-vector
correlator that can be decomposed on the flavour basis

�̂�
𝑓

𝐽 𝐽
(𝑡) = 𝑍2

𝑉, 𝑓𝐶
𝑓

𝐽 𝐽
(𝑡) 𝐶

𝑓

𝐽 𝐽
(𝑡) = −1

3
𝑒2
𝑓

3∑︁
𝑘=1

〈
𝐽
𝑓

𝑘
(𝑥)𝐽 𝑓

𝑘
(0)

〉 ®𝑔
. (13)

Here 𝑍𝑉, 𝑓 is the renormalization constant for the flavour 𝑓 needed to match the local vector current
to the conserved one. The correction to the renormalized two-point vector-vector correlator reads

Δ�̂�
𝑓

𝐽 𝐽
(𝑡) ≡ �̂� 𝑓

𝐽 𝐽
(𝑡) − 𝑍2

𝑉, 𝑓𝐶
𝑓 ,iso
𝐽𝐽

(𝑡)

= 𝑍2
𝑉, 𝑓Δ𝐶

𝑓

𝐽 𝐽
(𝑡) + 2𝑍𝑉Δ𝑍𝑉, 𝑓𝐶

𝑓 ,iso
𝐽𝐽

(𝑡) (14)

where Δ𝑍𝑉, 𝑓 is the QED correction for the flavour 𝑓 to the isoQCD renormalization constant 𝑍𝑉
and Δ𝐶

𝑓

𝐽 𝐽
(𝑡) is the correction of the bare vector-vector two-point correlator, which according to

Eq. (5) reads

Δ𝐶
𝑓

𝐽 𝐽
(𝑡) = 𝑒2

𝑓

𝜕𝐶
𝑓

𝐽 𝐽

𝜕𝑒2 (𝑡) + Δ𝑚
𝑓
𝑐𝑟

𝜕𝐶
𝑓

𝐽 𝐽

𝜕𝑚
𝑓
𝑐𝑟

(𝑡) + Δ𝜇 𝑓
𝜕𝐶

𝑓

𝐽 𝐽

𝜕𝜇 𝑓
(𝑡)

Before computing the correction to the light, strange and charm contribution to the HVP, we discuss
the determination of the correction to the vector current renormalization constant. Following
the discussion of Appendix B of [10], and noticing that the relation used to determine 𝑍𝑉, 𝑓

normalization constant in isoQCD keeps holding in our QCD + QED mixed action setup for a
𝑆𝑈 (2) doublet of valence quarks of equal charge and opposite Wilson parameter (𝑟 𝑓2 = −𝑟 𝑓1), we
can compute Δ𝑍𝑉, 𝑓 as follows

Δ𝑍𝑉, 𝑓 = Δ

{
2𝜇 𝑓

𝐶𝑃𝑃 (𝑡)
𝜕0𝐶𝐴0𝑃 (𝑡)

}
Δ𝑍𝑉 ≡ 1

2

(
Δ𝑍𝑉,𝑢

𝑒2
𝑢

+
Δ𝑍𝑉,𝑑

𝑒2
𝑑

)
. (15)

In Fig. 2 we show the time behaviour of the estimator of Δ𝑍𝑉/𝑍𝑉 . The results, on B48 and B64
respectively, obtained by fitting to a constant in the region between 𝑡 ∼ 1.0 fm and 𝑡 ∼ 2.5 fm, are

Δ𝑍𝑉/𝑍𝑉 × 104 = −125.14 ± 0.04 , Δ𝑍𝑉/𝑍𝑉 × 104 = −125.13 ± 0.03 . (16)
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Figure 2: The time behaviour of the estimator of Δ𝑍𝑉/𝑍𝑉 and the constant fit results are shown for B48
(left panel) and B64 (right panel).

4.1 The LIB correntions to 𝑎HVP
𝜇 (ℓ), 𝑎HVP

𝜇 (𝑠) and 𝑎HVP
𝜇 (𝑐) quark–connected contributions

For each flavour the correction to 𝑎HVP
𝜇 ( 𝑓 ) is estimated from the limit for 𝑡cut ↦→ ∞ of

Δ𝑎HVP
𝜇 ( 𝑓 ; 𝑡cut) = 2𝛼2

em

𝑛cut∑︁
𝑛=0

𝑛2𝐾
(
𝑚𝜇𝑎𝑛

)
Δ�̂�

𝑓

𝐽 𝐽
(𝑎𝑛) , (17)

where 𝑛 = 𝑡/𝑎 is the Euclidean time in lattice units.

While for the charm and strange contributions, vector-vector two-point correlators are very precise,
for the up and down contributions these are very noisy at large Euclidean time. To reduce the errors
we performed the calculation of 𝑎HVP

𝜇 (ℓ) for four different light quark masses, 𝑚ℓ = 𝑟𝑚𝜇ℓ with
𝑟𝑚 = 3, 5, 7, 9, exploiting a chiral extrapolation to obtain the target isoQCD light point (𝑟𝑚 = 1)
(this procedure has been proposed and used in [1], see Fig. 3). For each 𝑡cut, the chiral extrapolation
has been performed using the ansatz

Δ𝑎HVP
𝜇 ( 𝑓 ; 𝑡cut, 𝑟𝑚) = Δ𝑎HVP

𝜇 ( 𝑓 ; 𝑡cut) + 𝑐1 · 𝑟𝑚 (18)

using all the data–points, only those corresponding to 𝑟𝑚 = (3, 5, 7) and only those corresponding
to 𝑟𝑚 = (5, 7, 9) (see left bottom panel of Fig. 3). The first kind of fit is used to quote the central
values, while we estimated the systematic errors on the extrapolation from the spread between the
second and third kind of fit. Finally, the 𝑡cut ↦→ ∞ is performed fitting to a constant in the region
between 𝑡cut ∼ 2.5 fm and 𝑡cut ∼ 3.5 fm.

The results for the light contributions are shown in Tab. 3. At the current level of precision, the
results on the two volumes are compatible at about two standard deviations. In the case of strange
and charm vector channel correlators, which decrease very quickly with increasing time separation,
the degradation of the signal-to-noise ratio is immaterial for the uncertainty of our results (see the
left top and bottom panel of Fig. 5). Indeed, Δ𝑎HVP

𝜇 (𝑠; 𝑡cut) and Δ𝑎HVP
𝜇 (𝑐; 𝑡cut) show within errors

no dependence on 𝑡𝑐𝑢𝑡 for 𝑡cut > 2 fm and 𝑡cut > 1 fm, respecively. We, therefore perform correlated
fits to a constant for 𝑡cut values in the range [2.5, 3.7] fm and in the range [1.5, 3.7] fm for the
strange and charm quark case, respectively.

5. Conclusions and Outlooks

In this feasibility study, by using the RM123 approach and working in the electro-quenched approx-
imation, we have computed the LIB corrections to the light, strange and charm quark–connected

6
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Figure 3: For the B64 ensemble, we show the integrand of Eq. (17) for 𝑟𝑚 = 3, 5, 7, 9, as well as SIB
and QED correction to 𝐶𝑢

𝐽𝐽
(𝑡) + 𝐶𝑑

𝐽𝐽
(𝑡) with 𝑟𝑚 = 5 (left and right top panels, respectively). The left and

right bottom panels show the chiral extrapolation and the time dependence of the simulated and extrapolated
Δ𝑎HVP

𝜇 (ℓ; 𝑡cut).
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Figure 4: The time dependence of the extrapolated Δ𝑎HVP
𝜇 (ℓ; 𝑡cut) on the two volumes 𝐿 ∼ 3.8 fm (B48 in

blue) and 𝐿 ∼ 5.1 fm (B64 in orange).

Δ𝑎HVP
𝜇 (ℓ) × 1010 Δ𝑎HVP

𝜇 (𝑠) × 1010 Δ𝑎HVP
𝜇 (𝑐) × 1010

B48 3.41 ± 0.44 0.0049 ± 0.0010 0.1369 ± 0.0012
B64 4.79 ± 0.86 0.0059 ± 0.0007 0.1363 ± 0.0011

Table 3: The results of the LIB corrections to 𝑎HVP
𝜇 (ℓ), 𝑎HVP

𝜇 (𝑠) and 𝑎HVP
𝜇 (𝑐) contributions for the two

different volumes.

contributions to the anomalous magnetic moment of the muon. We employed vector-vector two-
point correlation functions computed on two ensembles (B48 and B64) with equal lattice spacing
(𝑎 ∼ 0.08 fm) and two different linear sizes 𝐿 ∼ 3.8 fm, 𝐿 ∼ 5.1 fm respectively. The very prelim-
inary results for Δ𝑎HVP

𝜇 (ℓ), Δ𝑎HVP
𝜇 (𝑠) and Δ𝑎HVP

𝜇 (𝑐) we present here exhibit an accuracy which
is in line with that achieved by other collaborations [1–3], as well as ETMC2019 [11]. However,
our errors here are preliminary and merely statistical and a careful assessment of systematic errors,
including possible FSE, is in progress and will be presented in future work. In this context, we
plan to repeat this calculation on a third ensemble with equal lattice spacing and a larger volume,
corresponding to 𝐿 ∼ 7.6 fm. A direct comparison of our results with those by other groups
is not straightforward since the definition of isoQCD is slightly different and is also deferred to
future work. The evaluation of the electro-quenched quark disconnected and electro-unquenched
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Figure 5: In the left panels, we show the SIB and QED correction to 𝐶𝑠
𝐽𝐽

(𝑡) and 𝐶𝑐
𝐽𝐽

(𝑡) for the B64
ensemble. The plateaux analysis of 𝑎HVP

𝜇 (𝑠) and 𝑎HVP
𝜇 (𝑐) for both the ensembles (B48 blu points and B64

orange points) are shown in the right panels.

contributions is planned too at three lattice spacings, including the one considered here.
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