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1. Introduction

1.1 Phenomenology

The rare FCNC decay of kaons into pions and two leptons can be used to search for new physics
beyond the SM. One possible channel for such decays is the charged lepton mode K — nf*¢~.
This decay is dominated by the long distance process K — ny* — nf*¢~ which pair produces
the leptons from an intermediate virtual photon. Therefore the goal is to compute the K — my*
amplitude which is given by

A = / d'x (x', p| T{Hw ()], (0} [K. k) . o

where the label i = +, S indicates the charged or neutral kaon decay processes K* — n*y* and
Ks — n%y* respectively. k and p are the kaon and pion 3-momenta respectively, Jyu is the
electromagnetic current, and Hyy is the effective s — d quark weak Hamiltonian described by [1]

Hw = -2 VisVaa [C1(QY = Q1) + C2(Q5 - 09 + .. ] . @

C; are the Wilson coefficients corresponding to the the 4-quark operators Q?,z operators given by

Of =[dy,(1-ys)s][gy* (1 = ys)q] 3)
07 =[dy,(1 - ys5)ql[gy* (1 - ys)s] . “4)

The Wilson coeficients of C;., are suppressed compared to C; 2 [2] and therefore to the desired
level of precision in the near future, only these two operators are required. The operator differences
QY — Qf present in eq. (2) are a manifestation of the GIM cancellation when renormalizing to a
scale above the charm mass.

The amplitude in eq. (1) can be decomposed in terms of a single hadronic form factor V;(z)

A, =i Gpril)

; F lan)? [¢°(k +p)y — (M§ — M2)q,] )

where k, p and g = k — p are the 4-momentum of the kaon, pion, and virtual photon respectively.
The form factor is parameterised by the dimensionless ratio z = g>/M2, and has the general form
Vi(z) = a; + biz + V™ (z), where V™™ contains the contribution from the intermediate 77 — y*
process [3].

The parameters a; and b; can be computed within the SM, as well as extracted from experiments,
the values of which are given in table 1. It is clear that the experimental and theory values for a.
are significantly discrepant, however, there are contributions to the theoretical value that have not
currently been taken into account that are discussed in [4]. It is therefore important that the theory
community work to produce a robust prediction for a. that includes all sources of statistical and
systematic errors. Lattice QCD is the only method that allows us to compute such observables
from first principles. For the rest of these proceedings we focus on the charged kaon decay mode,
although all of the principles are also applicable to the neutral kaon mode.
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Ll+ b+ aS bS
Exp. [5][6] | —=0.575(13) —0.722(43) | —-1.6">L  10.8*3%
or
19456 —11.3*8%
Theory [4] —1.59(8) —-0.82(6) - -

Table 1: Existing experimental and theory results for the form factor parameters a; and b; for the charged
and neutral kaon decay channels.
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Figure 1: Representatives of the different classes of diagrams in the 4-point correlation function. These are
the Non-Loop (top left), Loop (top right), Loop-Insertion (bottom) respectively. The Non-Loop and Loop
topologies also have additional diagrams with the current inserted on different legs. There are additional
disconnected diagrams that are not considered in this study.

1.2 Existing lattice result

The framework for computing this decay process on the lattice was introduced in [7], the key
object of which is the Euclidean space-time 4-point correlation function

Ul (tko . 1) = (G i (1, p) Hw (t1,0) J,, (0, q) o (1x, k), (6)

where all operators are in the time-momentum representation, and ¢, and ¢g: are interpolating
operators with the quantum numbers of the the pion and kaon respectively. There are several
types of Wick contraction that go into this 4-point function, representatives of which are shown in
fig. 1, which we denote as Non-Loop (NL), Loop (L), and Loop-Insertion (LI) diagrams. There are
additional diagrams where the vector current is located on a disconnected loop that are neglected
due to them being color and SU(3) flavor suppressed.

The connection between the correlator in eq. (6) and the physical amplitude in eq. (1) is
complicated by the breakdown of the analytic continuation, which manifests as exponentially
growing terms from intermediate states that must be removed, the details of which can be found in
[7]. For the purposes of these proceedings, all that is required is that the objects that most closely
relate to the amplitude are the integrated correlators

Tp

0
1,(T,) :—i/T dtulu(ty) and 15 (Ty) :—ifo dtgT,(th), (7)
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which separates the two time orderings of the intermediate operators. In [7-9] they alternatively
use 1,(Ta, Tp) = Iﬁ(Ta) + 1,7 (Tp) which contains the same information.

The first lattice calculation of this decay performed at the physical point was presented in [9],
with the final result

a, = V,(z=0.013) = -0.87(4.44), ()

which has an uncertainty approximately 8x larger than the experimental central value and 3x the
theory value. Therefore up to an order of magnitude error reduction is required to be sensitive to
the discrepancy between the theory and experimental values. The large uncertainty in eq. (8) is due
to the stochastic estimation of loop propagators required in the L and LI diagrams which contain the
difference between a light and a charm loop resulting in a large cancellation. At unphysically large
light quark mass [8] this cancellation was not problematic due to a large correlation between the
two loops, therefore a reasonable signal could could be achieved despite the cancellation. However,
at physical quark masses, this correlation is significantly reduced resulting in serious degradation
of the final signal. Achieving the required error reduction using the same techniques as [9] would
require an unreasonably large increase in computational resources, it is therefore imperative that an
improved method for calculating the problematic loop differences is found.

2. Split-even approach

The object required in the computation of the L diagrams is
AL(x) = Dj! (xlx) = DZ' (xlx) , ©)

where D, is a discretisation of the Dirac operator of quark flavor . In order to compute this exactly,
one would have to invert the Dirac operator for each lattice site x which would be prohibitively
expensive. Instead it is common practice to estimate it stochastically by introducing a set of noise
fields n7; (x) that satisfy

WA
. 1 ) 1 O ;
lim —= > m@=0 and  lim — > n()n/()=8x-y. (10
* S * =1
The loop estimator is therefore given by

1 & N,
L300 = 5 2, Dg Gl () 757 DG (b, (11)
i=1

where we have defined the shorthand notation D~!(x|n) = 2y D~(x]y)n(y). The loop difference
is simply given by the difference of these, ALY (x) = L?‘d (x) — L9 (x). This is exactly the estimator
used in the previous calculation where it was observed a large correlation between the two terms
is required for a reasonable signal to be obtained [9]. We refer to this approach as the standard
estimator.

The split-even estimator proposed in [10] avoids such issues with cancellations by directly
computing the difference. It utilises the identity

D;'-D;' = (m.-m)D;' D', (12)
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which is true for Wilson fermions as well as for Domain-Wall fermions (see [11] for details).
After applying this identity, the noise fields can be inserted at the rightmost position, which is
then identical to the standard estimator, or alternatively in-between the two inverse Dirac operators
giving the split-even estimator

N
. 1 - -
ALspht(x) = (me — ,/,11)F Z Dl 1()C|77i)DC1(nj|x) . (13)
S =1

Note that this is simply a different combination of the same propagators needed for the standard
estimator, and therefore has the same computational cost.

The split-even estimator can be applied trivially to the L diagrams of the 4-point correlation
function, because they contain exactly such loop differences. However, the LI diagrams do not
immediately contain the difference of propagators required, but instead contains a difference of
products of propagators (separated by a vector current)

AL, (x) = [D;'V,D; ' (x|x) = [DZ' VD (x]x), (14)

where V,, is a flavor-singlet vector current kernel, which may be either a local or conserved current,
and may be restricted to a single time plane and projected to some non-zero momentum transfer,
as is the case in this study. This can however be transformed into a form in which the split-even
estimator is applicable by adding and subtracting a flavor-changing vector current term D ! (V,,D;I

AL, (x) =[D;'*V,D; " |(x|x) - [D;'V,D ;'] (x]x) (15)
+[D; 'V, D (x]x) = [DZ'V, D] (x]x)
=(me = m) (D7 VD7 DZ' (xlx) + [D] ' D'V, D7 (x1x) ) (16)

This therefore gives the sum of two terms which each have a product Dl‘lD;1 between which the
noise fields can be inserted to give the split-even estimator of the LI diagrams as

Ny

spli ! - ; -
ALpplt(X) = (m¢ - mz)N_ Z ([Dl VD 1](x|,7i)1)cl(nj|x) (7
5=l

+D7 (xln) D' VD ()

In addition to the use of the split-even estimator, the loop difference can be broken up into
multiple smaller differences with intermediate mass quarks [ —c = (I—c¢y)+(c1—c2)+...+(cn —0),
each of which can utilise the split-even estimator. This technique, known as frequency-splitting,
allows the computational effort to be distributed according to the regions of the mass spectrum that
contribute most to the statistical uncertainty. It does however require Dirac operator inversions for
the additional intermediate quarks (a trade-off that must be balanced with the reduced number of
hits required for the smaller differences).

3. Numerical results

In this study we use the same RBC-UKQCD physical point ensemble [12] that was used in
the previous rare kaon decay calculation [9]. That is a 2 + 1 flavor ensemble with physical light
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oo |o | alec
ame 0.0362 0.15 0.25 0.30 0.35
M, [MeV] | 693(2) | 1492(1) | 2007(1) | 2230(1) | 2432(1)

Table 2: Bare quark masses (in lattice units) and corresponding 7. meson masses for the 5 intermediate
charm quarks used in this study.
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Figure 2: Comparison between the 4-point correlation function in eq. (6) for different charm masses using
the standard (left) and split-even (right) estimators. The non-loop diagram is shown for reference.

and strange quark masses and an inverse lattice spacing of a~! = 1730 MeV. All sea quarks and
the strange valance quark are simulated using the Mobius Domain-Wall action, while the light
and charm valance quarks are simulated with the zMd&bius action [13] tuned to approximate the
Mobius action with smaller Lg. This introduces a bias which should be corrected with an All-
Mode-Averaging (AMA) type procedure [14]. However, this correction is expected to be small due
to the tuning of the zMobius action so will be neglected in this study.

It has been observed that the Domain-Wall formalism breaks down for sufficiently heavy quark
masses [15], and therefore the physical charm quark cannot be simulated directly at this lattice
spacing. We therefore make measurements with the 3 lighter-than-physical charm masses used in
[9] for an extrapolation to physical charm mass. This combines very naturally with the frequency-
splitting technique where the intermediate charm masses can be those needed for the extrapolation,
and therefore the frequency-splitting does not require additional propagators for those masses. We
also include 2 additional lighter intermediate masses, the lightest of which is equal to the strange
quark, to help isolate which regions of the mass spectrum contribute most to the noise. The bare
charm masses used and the corresponding 7. masses are shown in table 2.

Since the results presented here are only an exploratory study of the split-even method for this
process, we use low statistics with only 10 configurations and average over 6 translations in time.
For the stochastic noises we use Ny = 32 hits for all mass splittings.

Figure 2 shows a comparison of the 4-point correlation in eq. (6) using the standard and the
split-even estimators at equal computational cost. It is clear that the split-even estimator provides a
large reduction in the uncertainties, which range from an approximately 5 — 25X error reduction.

Figure 3 shows a breakdown of the contributions from the different types of diagrams. We
observe that the LI diagrams contribute only a very small amount to to total, as well as contributing
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Figure 3: The 4-point correlation function (left) and the corresponding variance (right), broken down into
the NL, L, and LI diagrams.

to the variance at a level below that of the L diagrams. Since the LI diagrams are the most expensive
to compute, we may therefore benefit greatly by reducing the computational effort spent on these
diagrams, for example by performing fewer time translations and/or reducing the number of noise
hits.

In fig. 4 we see the comparison of the variance of the integrated correlators between the
two methods, and for each of the different charm masses. It is clear that much of the statistical
improvements seen in figure fig. 2 have propagated into the integrated correlator, with an error
reduction of between 4 — 10x for different integrals and charm masses. We also see that much of the
remaining noise comes from the lightest mass difference / — c;. Therefore the frequency-splitting
technique can be utilised to perform additional hits in the light part of the spectrum, while spending
less on the heavier charm masses that we see contribute very little to the total error.

4. Conclusions and Outlook

In conclusion, we have demonstrated that the split-even estimator proposed in [10] is appli-
cable to the Loop and Loop-Insertion diagrams in the lattice calculation of the rare kaon decay
K* — n™*¢~, which are exactly the dominant source of uncertainty in the existing calculation
of this process [9]. We have seen that this improved estimator has shown a massive reduction in
the statistical error of the 4-point correlation function and consequently in the integrated 4-point
functions that would be used to extract the amplitude in a future analysis. Assuming these improve-
ments propagate to the final form factor, they are at the level required in order to be sensitive to the
discrepancy between existing theory and experimental results. In addition it is observed using the
frequency-splitting technique that the largest contributor to the remaining uncertainty is in the light
part of the spectrum, which suggests more computational effort should be spent there and less on
the heavy mass differences.

This being an exploratory study of the methodology, there are limitations that must be lifted,
such as performing the zMobius-to-Mobius bias correction, and the inclusion of disconnected
diagrams to which the split-even estimator can also be applied [10]. Also due to the low statistics
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Figure 4: Variance of the two integrated correlators (top and bottom) using the standard (left) and split-even
(right) estimators.

nature of this study study, measurements will need to have to be made on additional configurations,
along with additional noise hits.

While it is expected that these error reductions on the integrated correlator propagate through
the analysis into the final value of the form factor, due to the relative complexity of such an analysis
it is not certain if all of the improvement will be realised, or if new statistical or systematic limiting
factors comes to dominate the error. This is all to be investigated in future work.
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