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We present an update on the analysis of semileptonic 𝐵 → 𝐷 (∗) decays at non-zero recoil. Our
computation employs 2 + 1 + 1 FNAL-MILC ensembles with highly improved staggered quark
(HISQ) action for sea and light valence quarks, while the bottom quark is treated using the clover
action in the Fermilab interpretation. Simulations are performed across several lattice spacings,
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present an overview of the analysis and show some preliminary results for the form factors.
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1. Introduction

Lattice QCD calculations of meson-decay form factors are essential for high-precision Standard
Model (SM) tests. Combined with experimental data, lattice results provide independent determi-
nations of CKM matrix elements, allowing SM precision tests. Among others, 𝐵 → 𝐷 (∗)ℓ𝜈-meson
decay allows a precise determination of the |𝑉𝑐𝑏 | element of the CKM matrix and has raised a lot of
interest in the recent past.1 FNAL-MILC was the first collaboration to perform a lattice computation
of the form factors at non-zero recoil with dynamical fermions, allowing for a precise determination
of |𝑉𝑐𝑏 | [3]. This update talk outlines the FNAL-MILC collaboration’s progress on the analysis
of the 𝐵 → 𝐷 (∗)ℓ𝜈 for the determination of the form factors. In this talk, we present preliminary
results of the analysis performed on the two- and three-point correlation functions aimed to extract
the form factors, following the workflow of [3].

2. Overview of the computation

The correlators are computed on the FNAL-MILC 𝑁 𝑓 = 2 + 1 + 1 ensembles generated with
a 1-loop improved Lüscher-Weisz gauge action, a HISQ action for the sea and 𝑢, 𝑑, 𝑠 valence
quarks, while 𝑐, 𝑏 valence quarks are treated with a clover action in the Fermilab interpretation.
The whole calculation employs 7 different ensembles spanning 4 different values of the lattice
spacing (𝑎 = 0.15, 0.12, 0.09, 0.06 fm) and 3 different values of the light-to-strange quark mass
ratio (𝑚𝑙/𝑚𝑠 ∼ 0.2, 0.1 and the physical value). [4]. The workflow for extracting the kinematic
quantities, the overlap coefficients, and the ratio follows Ref. [3, 5] which we refer for additional
detail. Suitable ratios of three-point function can be used to isolate the form factors [3, 5]. In the
case of the 𝐵 → 𝐷 decay, we have2
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The lattice values of the ratio can be obtained to parameterize the form factors as

ℎ+(𝑤) ≡
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(3)

1State of the art lattice results are reported in [1, 2]
2For the quark transition 𝑥 → 𝑦, we consider vector (𝑉𝜇

𝑥𝑦 = 𝜓̄𝑥𝛾
𝜇𝜓𝑦) and axial (𝐴𝜇 = 𝜓̄𝑥𝛾

𝜇𝛾5𝜓𝑦) currents.
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for the 𝐵 → 𝐷 case, and

ℎ𝐴1 (𝑤) ≡
2𝑅̄𝐴1

𝑤 + 1
, ℎ𝐴2 (𝑤) ≡

2𝑅̄𝐴1

𝑤2 − 1

(
𝑤𝑋1 −

√︁
𝑤2 − 1𝑋̄0 − 1

)
,

ℎ𝐴3 (𝑤) ≡
2𝑅̄𝐴1

𝑤2 − 1
(𝑤 − 𝑋1) , ℎ𝑉 (𝑤) ≡

2𝑅̄𝐴1√
𝑤2 − 1

𝑋̄𝑉 (4)

for 𝐵 → 𝐷∗, where the recoil parameter 𝑤 is defined by 𝑤 =
1+𝒙 𝑓 (𝒑)2

1−𝒙 𝑓 (𝒑)2 . After the insertion of
appropriate renormalization factors, the continuum limit and the extrapolation or interpolation to
physical masses have to be taken.

3. Lattice analysis

3.1 2-point function analysis

The 𝐷∗ and 𝐵-meson two-point functions are essential to extract the overlap factors and
energy states, which serve as inputs for the ratio fits. The two-point functions are constructed
using interpolating operators O𝑌𝑎 (p, 𝑡) containing the quantum number of the meson of interest
𝑌 = {𝐵, 𝐷∗}, where 𝑎 = {𝑑, 1𝑆} represents the type of smearing (point and Richardson [6, 7]), 𝑡 is
the time, and p is the spatial momentum. Inserting a complete set of states between the operators
in

〈
O𝑌𝑎 (p, 𝑡)O

†
𝑌𝑏
(p, 0)

〉
yields the spectral decomposition, which can be used as a model for fits to

data:

𝐶𝑌𝑎→𝑌𝑏 ( 𝒑, 𝑡) =
∑︁
𝑛

(
(−1)𝑡−1

)𝑛√︄𝑍
(𝑛)
𝑎 ( 𝒑)

2𝐸𝑛 ( 𝒑)

(
𝑒−𝐸𝑛 (𝒑)𝑡 + 𝑒−𝐸𝑛 (𝒑) (𝑁𝑡−𝑡 )

)√︄𝑍
(𝑛)
𝑏

( 𝒑)
2𝐸𝑛 ( 𝒑)

(5)

where 𝑁𝑡 is the temporal extent of the lattice, 𝑍 (𝑛) and 𝐸𝑛 are, respectively, the overlap factor and
the energy of the 𝑛th excited states, and the oscillating factor (−1)𝑡−1 arises due to the presence
of particles with the opposite parity in the staggered discretization for the fermions. Most of the
correlators appear in four different configurations depending on the combination of source and sink
smearing (𝑑 − 𝑑, 1𝑆 − 𝑑, 𝑑 − 1𝑆 and 1𝑆 − 1𝑆), and different momenta. Correlators related to
collinear momenta (𝑝𝑥 , 0, 0) come in two different orientations, parallel or perpendicular to the
𝐷 (∗) polarization. For each different momentum we perform a simultaneous fit of Eq. (5) to the
data corresponding to different smearings and momentum polarizations.

3.1.1 Analysis of the systematics

To handle autocorrelations, correlator data were binned and analyzed using jackknife resam-
pling, applying the same fitting routines to each bin. A fully correlated fit was performed by
minimizing a 𝜒2 function with Gaussian priors, where the covariance matrix was rescaled using
the non-binned dataset’s correlation matrix. The shrinking procedure from Ref. [8], also used in
Ref. [3], was applied to the correlation matrix. The fitting hyper-parameters include the fitting
window limits [𝑡min, 𝑡max] and the number of states 𝑁states truncating the spectral sum in Eq. (5).3

We use 𝑁states = 3 and aim to fix the fitting window in physical units: for 𝐷-meson fits, [0.4, 2.6] fm
3A “𝑁states + 𝑁states fit" indicates equal numbers of physical and oscillating states in the model.
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Figure 1: Fit results for 𝐷-meson correlator at momentum (2, 0, 0) for 𝑎 = 0.09, 𝑚𝑙/𝑚𝑠 = 0.2 for different
values of the lower end of the fitting window 𝑡min and different number of excited states considered in the
fitting model. Each dot corresponds to a value extracted from a different fit, each 𝑥-coordinate corresponds to
a different value of 𝑡min each colour to a different 𝑁states. Upper panel: The 𝑦-axis correspond to the extracted
value of the energy of the ground state. Lower panel: each dot represents the 𝑝-value of the corresponding
fit in the upper panel, the solid line to its TIC weight 𝑤 in the model average.

is chosen, while for 𝐷 (∗) mesons, 𝑡min ∼ 0.6 fm with 𝑡max chosen to ensure a signal-to-noise ratio
under 25%. Systematic effects from hyper-parameter choices are analyzed by performing fits across
various values of 𝑡min, 𝑡max, and 𝑁states. The stability of extracted energies and overlap factors is
assessed, focusing on various 𝑡min fits at fixed 𝑡max. Stability regions are identified using the ground
state’s energy, 𝑝-value distributions [9], reduced 𝜒2 values [10], and compatibility with the model-
averaged results via the Takeuchi Information Criterion (TIC) [11]. Fig. 1 illustrates this stability
analysis for the ground state 𝐷-meson energy 𝐸0. The upper panel shows 𝐸0 values for various
𝑡min, 𝑡max, and 𝑁states. The lower panel plots 𝑝-values and TIC weights. Results confirm 𝐸0 from
a 3 + 3 fit is stable across 𝑡min values. For lower 𝑁states, 𝑡min must increase to achieve stability, as
signaled by 𝑝-values.

3.2 3-point function analysis

Using the same notation for Eq. (5), the 3-point correlators are constructed by inserting a
current 𝐽𝜇 between the two meson interpolators as

〈
O𝑌𝑏 (0, 𝑇)𝐽𝜇 (𝑝, 𝑡)O

†
𝑋𝑎

(−𝑝, 0)
〉

(for a particular
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source-sink separation 𝑇 and time 𝑡). The spectral decomposition for the three-point function reads

𝐶𝐽𝜇

𝑋𝑎→𝑌𝑏
( 𝒑, 𝑡) =

∑︁
𝑛,𝑚

𝑠𝑛 (𝑡)𝑠𝑚(𝑇−𝑡)
√︁
𝑍𝑌𝑏 ,𝑛 ( 𝒑)

𝑒−𝐸𝑛 (𝒑)𝑡

2𝐸𝑛 ( 𝒑)
⟨𝑌𝑏, 𝑛, 𝒑 |𝐽𝜇 | 𝑋𝑎, 𝑚, 0⟩

√︁
𝑍𝑋𝑎 ,𝑚(0)

𝑒−𝑀𝑚 (𝑇−𝑡 )

2𝑀𝑚

,

(6)
where 𝑠𝑛 (𝑡) denotes the oscillating phase. Following the construction above, we build the different
ratios 𝑅( 𝒑, 𝑡, 𝑇) from Eq. (1) and (2) for 2 different source-sink separations 𝑇 . As suggested in
Ref. [12], we smooth the oscillating terms by computing the following quantity at each momentum

𝑅(𝑡, 𝑇) = 1
2
𝑅(𝑡, 𝑇) + 1

4
𝑅(𝑡, 𝑇 + 1) + 1

2
𝑅(𝑡 + 1, 𝑇 + 1) (7)

We then perform a simultaneous fit to all the data corresponding to different ratios and different
momenta using the following fitting model

𝑅( 𝒑, 𝑡, 𝑇) = 𝐹0 + 𝐴( 𝒑)𝑒−Δ𝐸source𝑡 + 𝐵( 𝒑)𝑒−Δ𝐸sink (𝑇−𝑡 ) (8)

where Δ𝐸 is the difference between the energy of the first excited state and the ground state of the
meson in the source and in the sink. This functional form comes from an expansion of Eq. (6) to
include the presence of excited states at the leading order. Using such a model, we can fit Eq. (8)
simultaneously to all our data (separately for the 𝐵 → 𝐷 and 𝐵 → 𝐷∗ case) with shared Δ𝐸𝐷 (∗)

and Δ𝑀𝐵,4 The results of the global fits fit for one ensemble are depicted in Fig. 2, 3.

3.3 Extraction of the form factor

We use the values of the ratio computed as in the previous subsection to build the form factors
defined in Eq. (3) and (4). In the form factor definitions, the barred ratios require renormalization.
As the renormalization factors were unavailable at the time of this work, the final form factor values
could not be constructed. However, since these factors are typically close to 1, plotting the non-
renormalized form factor remains instructive. We plot the final preliminary results of this analysis
in Fig. 4, 5.

4. Conclusion

We presented preliminary results from the FNAL-MILC collaboration’s analysis of 𝐵 →
𝐷 (∗)ℓ𝜈 decays, focusing on form factor extraction.. Using two- and three-point correlation data
from 𝑁 𝑓 = 2 + 1 + 1 MILC ensembles, we applied systematic uncertainty control and extracted the
value of the ratios needed to compute the necessary form factors. The results show stable form
factors and a good control over systematic effects. Future work includes continuum and physical
mass extrapolations to finalize the analysis, advancing lattice QCD in semileptonic 𝐵 decays and
precision flavor physics.

4One can easily see that Δ𝐸𝐷 (∗) and Δ𝑀𝐵 are the only parameters of interest in the limit in which 𝑝2 ≪ 𝑀2 and
Δ𝐸𝐷 (∗) ≃ Δ𝐸𝐵, which we test to be the case for our data.
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Figure 2: Results of the global fit of the relevant ratios for the 𝐵 → 𝐷 process for the same ensemble of the
example case in Fig.1. The dashed lines indicate the fitted functional forms projected to every case, while
the colored bands represent the value of 𝐹0 with its error. We observe that the fit results are insensitive to the
fitting window’s choice. Each color represents a different momentum as in the legend, except for the panel
depicting 𝑅+, which is defined at 0 momentum.
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Figure 3: Same as in Fig. 2, but for the 𝐵 → 𝐷∗ process. The legend also explains the colour code, except
for the case of 𝑅𝐴1 , which is only defined at 0-momentum.
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Figure 4: Bare, blinded form factors for the 𝐵 → 𝐷 process, defined in Eq. (3).
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Figure 5: Bare, blinded form factors for the 𝐵 → 𝐷∗ process, for the ensemble indicated in the legend,
defined in Eq. (4)
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