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We discuss a method to generate form factor curves consistent with dispersive constraints across
the entire kinematic range for exclusive semileptonic (SL) pseudoscalar to pseudoscalar decays,
for example 𝐵 → 𝜋ℓ𝜈 and 𝐵𝑠 → 𝐾ℓ𝜈. The work builds on the Dispersive Matrix (DM) method
which allows model-independent extrapolation to any desired 𝑞2 value in the SL physical region
using known form factor information at specific discrete 𝑞2 points as input. Here 𝑞 is the outgoing
lepton-pair 4-momentum. An obstacle in using DM results for phenomenological predictions, such
as forward-backward asymmetries, is that it is not obvious how to use the bounds over continuous
ranges of 𝑞2 when integrating, for example, the differential decay rate over the physical 𝑞2 range or
over bins in 𝑞2. We describe a method to generate a family of curves, each consistent with unitarity
constraints, that can be used in the same way as a set generated from a parametrized fit (e.g. a
𝑧-fit). This allows integration over any desired bins. We further show some techniques to increase
the computational efficiency of the method. We demonstrate the application to determining |𝑉𝑢𝑏 |.
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Figure 1: Quark flow diagram for 𝐵 → 𝜋ℓ𝜈 decay

1. Background

We consider exclusive semileptonic pseudoscalar to pseudoscalar decays, specifically 𝐵 → 𝜋ℓ𝜈

and 𝐵𝑠 → 𝐾ℓ𝜈, for which the QCD matrix element, written for 𝐵 to 𝜋 decay, is

⟨𝜋(𝑘) |V𝜇 (0) | 𝐵(𝑝)⟩ = 𝑓+(𝑞2)
(
𝑝𝜇 + 𝑘𝜇 − 𝑀2 − 𝑚2

𝑞2 𝑞𝜇
)
+ 𝑓0(𝑞2)𝑀

2 − 𝑚2

𝑞2 𝑞𝜇 . (1)

Here, V𝜇 = 𝑢̄𝛾𝜇𝑏 is the weak flavour-changing current. 𝐵 and 𝜋 have masses 𝑀 and 𝑚, with
4-momenta 𝑝 and 𝑘 , respectively, and 𝑞 = 𝑝 − 𝑘 . The form factors 𝑓+ and 𝑓0 satisfy the kinematic
constraint 𝑓+(0) = 𝑓0(0). We wish to find the full 𝑞2 dependence of the form factors. For these
heavy-to-light decays, lattice simulations give form factor data in the high-𝑞2 (low-recoil) regime
which must be extrapolated (in contrast, sum rules provide values at low 𝑞2).

Bounds on the form factors are obtained from dispersion relations. They relate a two-point
current-current correlator, projected onto its 𝐽𝑃 = 1− or 0+ channels, to an integral of its absorptive
part, in which a complete sum of exclusive states is inserted.

𝜒0+ =
1
𝜋

∫ ∞

𝑡𝑐𝑢𝑡

𝑑𝑡
ImΠ0+ (𝑡)

𝑡
, 𝜒1− =

1
𝜋

∫ ∞

𝑡𝑐𝑢𝑡

𝑑𝑡
ImΠ1− (𝑡)

𝑡2
,

ImΠ0+,1− =
1
2

∑︁
𝑛

∫
𝑑𝜇(𝑛) (2𝜋)4𝛿 (4) (𝑞 − 𝑝𝑛) |⟨0|𝐽 |𝑛⟩|2.

(2)

Restricting the sum of states (and using crossing symmetry) leads to the bounds [1–8].
We introduce the conformal map, 𝑧, which maps the 𝑞2 = 𝑡 complex plane onto the unit disc:

𝑧(𝑡) =
√
𝑡cut − 𝑡 −

√
𝑡cut − 𝑡0√

𝑡cut − 𝑡 +
√
𝑡cut − 𝑡0

, 𝑡0 = 𝑡cut −
√︁
𝑡cut(𝑡cut − (𝑀 − 𝑚)2) , (3)

where 𝑡cut is the relevant two-particle production threshold and we have chosen 𝑡0 to make the range
of 𝑧 symmetric around 0 for the kinematically allowed range of 𝑞2. The dispersive bounds then take
the form

1
2𝜋𝑖

∮
|𝑧 |=1

𝑑𝑧

𝑧
|𝜙(𝑧)𝐵(𝑧) 𝑓 (𝑧) |2 ≤ 𝜒, (4)

where 𝜙(𝑧) is the outer function containing kinematic factors, and 𝐵(𝑧) is a Blaschke factor that
ensures analyticity in the presence of sub-threshold poles.

There are two common ways to proceed:

• Analyticity allows a power series expansion of 𝜙𝐵 𝑓 (BGL/BCL expansion) and unitarity
gives constraints on the coefficients [5–7].

• The Dispersive Matrix method finds form factor values allowed by unitarity, independent of
any functional form [1–4, 8–11].
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Figure 2: Mapping the 𝑞2 complex plane onto the unit disc in 𝑧.

2. Dispersive Matrix (DM) Method

We define an inner product,

⟨ 𝑗 | 𝑘⟩ = 1
2𝜋𝑖

∮
|𝑧 |=1

𝑑𝑧

𝑧
𝑗 (𝑧)𝑘 (𝑧), (5)

together with function 𝑔𝑡 (𝑧),
𝑔𝑡 (𝑧) ≡

1
1 − 𝑧(𝑡)𝑧 , (6)

so that ⟨𝑔𝑡 | 𝜙𝐵 𝑓 ⟩ = 𝜙
(
𝑧(𝑡)

)
𝐵
(
𝑧(𝑡)

)
𝑓
(
𝑧(𝑡)

)
. We introduce the Gram matrix,

𝑀 =

©­­­­­­­«

⟨𝜙𝐵 𝑓 | 𝜙𝐵 𝑓 ⟩ ⟨𝜙𝐵 𝑓 | 𝑔𝑡⟩ ⟨𝜙𝐵 𝑓 | 𝑔𝑡1⟩ · · · ⟨𝜙𝐵 𝑓 | 𝑔𝑡𝑛⟩
⟨𝑔𝑡 | 𝜙𝐵 𝑓 ⟩ ⟨𝑔𝑡 | 𝑔𝑡⟩ ⟨𝑔𝑡 | 𝑔𝑡1⟩ · · · ⟨𝑔𝑡 | 𝑔𝑡𝑛⟩
⟨𝑔𝑡1 | 𝜙𝐵 𝑓 ⟩ ⟨𝑔𝑡1 | 𝑔𝑡⟩ ⟨𝑔𝑡1 | 𝑔𝑡1⟩ · · · ⟨𝑔𝑡1 | 𝑔𝑡𝑛⟩

...
...

...
. . .

...

⟨𝑔𝑡𝑛 | 𝜙𝐵 𝑓 ⟩ ⟨𝑔𝑡𝑛 | 𝑔𝑡⟩ ⟨𝑔𝑡𝑛 | 𝑔𝑡1⟩ · · · ⟨𝑔𝑡𝑛 | 𝑔𝑡𝑛⟩

ª®®®®®®®¬
=

(
⟨𝜙𝐵 𝑓 | 𝜙𝐵 𝑓 ⟩ ®𝐹T

®𝐹 𝐺

)
(7)

with ®𝐹 =
(
⟨𝜙𝐵 𝑓 | 𝑔𝑡⟩, ⟨𝜙𝐵 𝑓 | 𝑔𝑡1⟩, . . . , ⟨𝜙𝐵 𝑓 | 𝑔𝑡𝑛⟩

)
. Here, ⟨𝜙𝐵 𝑓 | 𝜙𝐵 𝑓 ⟩ is the inner product con-

strained by the dispersion relation 𝜒 ≥ ⟨𝜙𝐵 𝑓 | 𝜙𝐵 𝑓 ⟩, ⟨𝜙𝐵 𝑓 | 𝑔𝑡⟩ contains the form factor 𝑓 (𝑡) which
we wish to find, and ⟨𝜙𝐵 𝑓 | 𝑔𝑡𝑖 ⟩ contain the known form factor values at points 𝑞2

𝑖
= 𝑡𝑖 . Since

𝑀 and 𝐺 are both positive semidefinite (and det𝐺 > 0 provided 𝑡 and all the 𝑡𝑖 are distinct), the
identity det𝑀 = det𝐺 ×

(
⟨𝜙𝐵 𝑓 | 𝜙𝐵 𝑓 ⟩ − ®𝐹T𝐺−1 ®𝐹

)
leads to

⟨𝜙𝐵 𝑓 | 𝜙𝐵 𝑓 ⟩ − ®𝐹T𝐺−1 ®𝐹 ≥ 0. (8)

Substituting the dispersive bound gives

𝜒 − ®𝐹T𝐺−1 ®𝐹 ≥ 0. (9)

The left hand side is a quadratic polynomial in 𝜙(𝑡)𝐵(𝑡) 𝑓 (𝑡) and the inequality provides a lower
and an upper bound on 𝑓 (𝑡).

3. Generating curves

The DM method makes it easy to find form-factor bounds at any 𝑞2, but it is not so obvious
how to exploit the bounds over continuous ranges of 𝑞2 when, for example (partially) integrating
the differential decay rate.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
5
3

Form factor curves consistent with unitarity for semileptonic decays Callum Radley-Scott

We describe how to apply the DM method to generate a family of curves, each consistent with
the unitarity constraints, that can be used in the same way as a set generated from a parameterised
fit (e.g. a 𝑧-fit). We do this assuming perfect knowledge of the form factors at a set of input 𝑞2

values. By resampling the inputs we can generate further sets of curves to take into account errors
in the inputs. For each resampling we generate 𝑛inner curves.

The first step is to find the bounds at 𝑞2 = 0 and implement the kinematic constraint, following
the method described in [9]. We separately determine the bounds for 𝑓+ and 𝑓0 at 𝑞2 = 0 and
then randomly and uniformly select a value in the intersection of these bounds as the common
𝑓+(0) = 𝑓0(0) (whenever a unitarity bound for a form factor is computed, our assumption is that
the form factor value is uniformly distributed across the bound). From here on both form factors
are treated in the same way and our discussion will apply for either one.

With the point at 𝑞2 = 0 chosen, we have constrained our attention to all form factor curves
passing through this point. The extra point is added as new input in the dispersive matrix, allowing
us to determine a new bound at 𝑞2 = 𝛿, where 𝛿 is small. We randomly choose a value satisfying
the bound, add the 𝑞2 = 𝛿 point to the dispersive matrix and compute bounds at 𝑞2 = 2𝛿. We repeat
this process to step across the entire physical 𝑞2 region.

In the limits 𝑛inner → ∞ and 𝛿 → 0 we will construct all form factor curves allowed by unitarity
which pass through the resampled input points (and satisfy the kinematic constraint). In practice
we keep 𝛿 finite and compute an interpolating function through the generated points. We must
therefore check that 𝛿 can be made small enough for it not to affect phenomenological quantities
computed using the generated curves (and check for independence of the interpolation method).

Figure 3 shows 𝑛inner = 100 form factor curves for 𝑓+ and 𝑓0 generated from a single resample
of JLQCD [12] synthetic lattice QCD data points for 𝐵 → 𝜋𝑙𝜈 decay. The DM method bounds are
overlaid and the envelope of all curves is within, but is filling out, the bounds.

3.1 ‘Marching’ across the full 𝑞2 range

When generating form factor curves over the full 𝑞2 range, the size and number of dispersive
matrices increases, more so as 𝛿 decreases.

However, the upper and lower bounds for adding new points to a curve become closer and
closer and effectively coalesce as more points are added. This is because almost all freedom in the
curve is exhausted after sufficiently many points have been chosen. We find that we can remove
earlier points from the dispersive matrix provided we check that the width of the bound for a new
point remains close enough to zero. This speeds up the generation of curves; the dispersive matrix
does not keep growing in size and we ‘march’ across the range of 𝑞2.

In practice, a threshold is set below which the width of the bound is considered to be zero.
If the width is above the threshold, then we do not drop an earlier point before computing the
next set of bounds. We check that we can make the threshold small enough for it not to affect
phenomenological results.

3.2 Dependence on 𝛿

Figure 4 shows how Γ/|𝑉𝑢𝑏 |2, the calculated decay rate with the CKM factor removed, changes
as 𝛿 is varied. We see stability as 𝛿 is decreased and that the effects of nonzero 𝛿 are much smaller
than the variations allowed by unitarity.

4
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Figure 3: 100 curves (plotted in various colours so they can be distinguished from one another) generated
for a single resample of JLQCD 𝐵 → 𝜋ℓ𝜈 synthetic data points (orange for 𝑓+, blue for 𝑓0) [12]. The DM
method bounds for these points are also plotted.
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Figure 4: Calculation of Γ |𝑉𝑢𝑏 |−2 using 500 form factor curves for various values of 𝛿. The error bars
represent the 16th and 84th percentile values, and the point shown is the median.
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Experiment 103 |𝑉𝑢𝑏 | DM curves 103 |𝑉𝑢𝑏 | BCL 𝑧-fit
Belle 2010 4.05(43) 4.10(45)
Belle 2013 4.14(52) 3.91(45)
BaBar 2010 3.55(39) 3.58(41)
BaBar 2012 3.97(48) 4.04(43)
All experiments 3.88(38) 3.93(41)
All experiments excl. BaBar 2010 4.08(45) 4.01(42)

Table 1: |𝑉𝑢𝑏 | from 𝐵 → 𝜋ℓ𝜈 using lattice form-factor inputs from JLQCD [12] and experimental datasets
from BaBar and Belle [13–16]. We show our results and those from BCL 𝑧-fits [12] with the same inputs.

3.3 Extraction of 𝑉𝑢𝑏
We consider the extraction of |𝑉𝑢𝑏 | using JLQCD [12] 𝐵 → 𝜋𝑙𝜈 form factors and four sets of

experimental results [13–16] from BaBar and BELLE, each of which provides partial branching
fractions for a set of 𝑞2 bins, with associated covariance matrices.

We will adopt a Bayesian approach. For each 𝑓+, 𝑓0 curve pair, 𝑐, and set of experimental
results, we compute a likelihood for |𝑉𝑢𝑏 | to take the value 𝜃, proportional to exp[−𝜒2

𝑐 (𝜃)/2], where

𝜒2
𝑐 (𝜃) =

∑︁
expts, 𝑒

(®Δ𝑒 − 𝜃2 ®Δ0
𝑐

)T
𝐶−1
𝑒

(®Δ𝑒 − 𝜃2 ®Δ0
𝑐

)
. (10)

Here ®Δ𝑒 is a vector of experimental partial branching fractions for a set of 𝑞2 bins for experiment 𝑒,
while ®Δ0

𝑐 are the corresponding quantities, without the CKM factor, computed using the curve
pair 𝑐. 𝐶𝑒 is the experimental covariance matrix. The posterior distribution for 𝜃 is then

𝜌(𝜃) =

∑︁
𝑐

exp[−𝜒2
𝑐 (𝜃)/2]∑︁

𝑐

∫ 𝜃1

𝜃0

exp[−𝜒2
𝑐 (𝜃)/2] 𝑑𝜃

, (11)

from which we can evaluate the expectation value for some function 𝑔 of 𝜃 according to

𝑔̂ =

∫ 𝜃1

𝜃0

𝑔(𝜃)𝜌(𝜃) 𝑑𝜃. (12)

In particular we can evaluate the mean and variance of 𝜃 to provide an estimated |𝑉𝑢𝑏 |. We are
assuming a uniform prior for 𝜃 in the range [𝜃0, 𝜃1]. We checked that several choices of the range
did not change our results within the accuracy quoted. Table 1 and figure 5 show results for |𝑉𝑢𝑏 |
for different combinations of experimental inputs. The table also shows the compatibility of our
results with those obtained by JLQCD [12] from a BCL 𝑧-fit to the same inputs.

The variation from resampling the input form factor values when computing phenomenological
results is bigger than the variation seen by changing 𝑛inner. Hence we performed the above analysis
by generating one curve for each resample and increasing the number of resamplings. We used
1760 form-factor curve pairs.

In conclusion we have demonstrated a method to generate form factor curves as functions of 𝑞2

which satisfy dispersive unitarity constraints and can easily be used in phenomenology, maintaining
the DM matrix method’s feature that no functional form needs to be imposed in advance.
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Figure 5: Bayesian posterior distributions in blue of |𝑉𝑢𝑏 | for various experimental datasets [13–16]. Mean
and standard deviation are indicated by vertical red lines and dashed lines.
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