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We give an update of our calculation of the light-quark, connected, hadronic vacuum polarization
contribution to the muon anomalous magnetic moment, or muon 𝑔 − 2. The update includes
preliminary results on a 2 + 1 + 1 highly-improved staggered quark (HISQ) ensemble from the
MILC collaboration with physical pion mass, 0.042 fm lattice spacing, and volume 1443 × 288.
We discuss code and algorithm improvements for these calculations to compute the vector-vector
correlation function more efficiently.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:vaishakhi.moningi@uconn.edu
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
4
7

Progress on the HVP contribution to muon 𝑔 − 2 Vaishakhi Moningi

1. Introduction

The anomalous magnetic moment of the muon, 𝑎𝜇 = (𝑔−2)/2, can be measured and computed
from theory very precisely. We can potentially uncover new particles and/or interactions by
comparing the results from high-precision experiments and theory. The most precise experimental
result right now is from Fermilab experiment E989 with a precision of 0.20 ppm [1]. Runs 4,
5, and 6 will further reduce the uncertainty by roughly a factor of 2. The result is anticipated
for early 2025. Therefore, a commensurate theoretical effort is necessary to match the increasing
experimental precision.

In this proceedings we provide an update on the leading hadronic vacuum polarization (HVP)
contribution to muon 𝑔 − 2 coming from the light quarks only using the HISQ action for 2+1+1
flavors of quarks. In particular we investigate two techniques to reduce statistical errors.

2. Theoretical framework

The total HVP contribution to 𝑎𝜇 comes from both connected and disconnected quark diagrams
for each quark flavor. The largest contribution is from the connected light quarks, and we focus on
those contributions in this work. Using lattice QCD and continuum, infinite-volume perturbative
QED, one can calculate the HVP contribution to the muon anomalous magnetic moment [2–4].

𝑎HVP
𝜇 = 4𝛼2

∫ ∞

0
𝑑𝑞2 𝑓 (𝑞2) Π̂(𝑞2), (1)

𝑓 (𝑞2) =
𝑚2

𝜇𝑞
2𝑍3(1 − 𝑞2𝑍)

1 + 𝑚2
𝜇𝑞

2𝑍2
, 𝑍 = −

𝑞2 −
√︃
𝑞4 + 4𝑚2

𝜇𝑞
2

2𝑚2
𝜇𝑞

2
. (2)

𝑚𝜇 is the muon mass, and Π̂(𝑞2) is the subtracted HVP, Π̂(𝑞2) = Π(0) −Π(𝑞2), computed directly
on a Euclidean space-time lattice from the Fourier transform of the vector current two-point function,

Π𝜇𝜈 (𝑞) =

∫
𝑑4𝑥 𝑒𝑖𝑞𝑥 ⟨ 𝑗 𝜇 (𝑥) 𝑗 𝜈 (0)⟩ = Π(𝑞2) (−𝑞𝜇𝑞𝜈 + 𝑞2𝛿𝜇𝜈), (3)

𝑗 𝜇 (𝑥) =
∑︁
𝑖

𝑄𝑖𝜓̄𝑖 (𝑥)𝛾𝜇𝜓𝑖 (𝑥). (4)

𝑗 𝜇 (𝑥) is the electromagnetic current, and 𝑄𝑖 is the quark electric charge in units of the electron
charge 𝑒 and 𝑖 is the sum over flavours. The form in Eq. (3) is found through the Lorentz invariance
and the Ward identity.

To compute 𝑎HVP
𝜇 we use the time-momentum representation [5] which results from interchang-

ing the order of the Fourier transform and momentum integrals in Eqs. (1) and (3), respectively:

Π(0) − Π(𝑞2) =
∑︁
𝑡

(
cos 𝑞𝑡 − 1

𝑞2 + 1
2
𝑡2
)
𝐶 (𝑡), 𝐶 (𝑡) =

1
3

∑︁
®𝑥,𝑖

⟨ 𝑗 𝑖 (®𝑥, 𝑡) 𝑗 𝑖 (0)⟩, (5)

𝑤(𝑡) = 4𝛼2
∫ ∞

0
𝑑𝜔2 𝑓 (𝜔2)

[
cos𝜔𝑡 − 1

𝜔2 + 𝑡2

2

]
, (6)
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where 𝐶 (𝑡) is the Euclidean time correlation function of two electromagnetic currents, averaged
over spatial directions to project onto zero spatial momentum. Equation (1) becomes

𝑎HVP
𝜇 (𝑇) =

𝑇/2∑︁
𝑡=−𝑇/2

𝑤(𝑡)𝐶 (𝑡) = 2
𝑇/2∑︁
𝑡=0

𝑤(𝑡)𝐶 (𝑡). (7)

𝑇 is the temporal size of the lattice, and 𝑎HVP
𝜇 is obtained in the limit 𝑇 → ∞. In Fig. 1 we show a

typical result for 𝑤(𝑡)𝐶 (𝑡).
The aim of lattice calculations is to efficiently obtain 𝐶 (𝑡) with as much precision as possible.

To do this we use the techniques of low-mode averaging (LMA) [6, 7] and all-mode averaging
(AMA) [8]. Both methods rely on the spectral decomposition of the quark propagator in terms of
the eigenvectors of the lattice Dirac operator. The quark propagator from source point 𝑦 to sink
point 𝑥, 𝑆(𝑥, 𝑦) mathematically is given by the inverse of the Dirac operator,

𝑆(𝑥, 𝑦) = 𝐷−1(𝑥, 𝑦) =
∑︁
𝜆≤𝜆𝑁

⟨𝑥 |𝜆⟩⟨𝜆 |𝑦⟩
𝜆

+
∑︁
𝜆>𝜆𝑁

⟨𝑥 |𝜆⟩⟨𝜆 |𝑦⟩
𝜆

= 𝑆𝐿 + 𝑆𝐻 , (8)

where the RHS shows the spectral decomposition divided into two pieces, one for the low modes
up to 𝜆𝑁 and one for the rest, or high modes. Accordingly, we separate 𝐶 (𝑡) into four parts,

𝐶 (𝑡) =
∑︁
®𝑥, ®𝑦

Tr𝛾𝑖𝑆(𝑥, 𝑦)𝛾𝑖𝑆(𝑦, 𝑥) = 𝐶𝐿𝐿 + 𝐶𝐿𝐻 + 𝐶𝐻𝐿 + 𝐶𝐻𝐻 , (9)

In practice, once the low modes are determined, 𝑆𝐻 is determined by computing the inverse of
the deflated Dirac operator, using the conjugate gradient algorithm. So, not only do the low
modes significantly enhance our statistics through LMA, but they also dramatically accelerate the
computation of the high mode part.

3. Motivation

In our previous work [9, 10], the Euclidean correlation function 𝐶 (𝑡) was just divided into two
pieces: the pure low-mode contribution and the rest. We relied on LMA to handle the noisy long
distance part of the correlator and AMA for the rest. While this worked well for the result shown
in Fig. 1, we must do better to reach our goal, especially since the lattice of our target ensemble
is even larger, 1443 × 288. First, while the LL part of the correlation function yields a full-volume
average over all source points, the HL and LH parts are only averaged over a tiny fraction of them
as part of the AMA procedure. Despite the exponentially small contribution at long distance, the
noise coming from the low modes in the HL (LH) part is still significant. Comparing the middle
and right panels in Fig. 1, the LL part clearly has much smaller fluctuations than the total.

To include a full volume average for the HL (LH) part, we adopt the method in [6] where the
HL part is computed separately instead of together with the HH part as in our earlier AMA-style
calculation [10]1. Note, if we did not do this separation, we would need more solves for the “rest”
since then the high-high and high-low parts are computed all at once (an extra subtraction of the
low-low parts for these solves is also needed).

1We thank Simon Kuberski and the Mainz group for discussions on this point.
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Figure 1: The summand in Eq. (7). No LMA (left), total (middle), LMA only (right). Odd-parity, excited
state oscillations intrinsic to staggered fermions are readily apparent.

4. Algorithm improvements

On the lattice the local electromagnetic current is not conserved, so we use a point-split current
that is exactly conserved,

𝐽𝜇 (𝑥) = −1
2
𝜂𝜇 (𝑥) ( 𝜒̄(𝑥 + 𝜇̂)𝑈†

𝜇 (𝑥)𝜒(𝑥) + 𝜒̄(𝑥)𝑈𝜇 (𝑥)𝜒(𝑥 + 𝜇̂)) (10)

where 𝑈𝜇 are the gauge links for gauge invariance, 𝜒(𝑥) are the single spin component staggered
fermion fields, and 𝜂(𝑥) arise from the spin diagonalization of the fermion action. The two-point
function then becomes

⟨𝐽𝜇 (𝑥) (𝐽𝜈 (𝑦))†⟩ = 1
4
(𝑆(𝑦 + 𝜈̂, 𝑥 + 𝜇̂)𝜂𝜇 (𝑥)𝑈†

𝜇 (𝑥)𝑆(𝑥, 𝑦)𝜂𝜈 (𝑦)𝑈𝜈 (𝑦)

+ 𝑆(𝑦 + 𝜈̂, 𝑥)𝜂𝜇 (𝑥)𝑈𝜇 (𝑥)𝑆(𝑥 + 𝜇̂, 𝑦)𝜂𝜈 (𝑦)𝑈𝜈 (𝑦)
+ 𝑆(𝑦, 𝑥 + 𝜇̂)𝜂𝜇 (𝑥)𝑈†

𝜇 (𝑥)𝑆(𝑥, 𝑦 + 𝜈̂)𝜂𝜈 (𝑦)𝑈†
𝜈 (𝑦)

+ 𝑆(𝑦, 𝑥)𝜂𝜇 (𝑥)𝑈𝜇 (𝑥)𝑆(𝑥 + 𝜇̂, 𝑦 + 𝜈̂)𝜂𝜈 (𝑦)𝑈†
𝜈 (𝑦)). (11)

For the low-mode contributions it is useful to define a quantity called a meson field,(
Λ𝜇 (𝑡)

)
𝑛,𝑚

=
∑︁
®𝑥
⟨𝑛|𝑥⟩𝑈𝜇 (𝑥) ⟨𝑥 + 𝜇 |𝑚⟩ , (12)

where 𝑛, 𝑚 label eigenmodes of the Dirac operator, and the phases have been absorbed into the link
variables, 𝑈𝜇 (𝑥)𝜂𝜇 (𝑥) → 𝑈𝜇 (𝑥).

4.1 High-low (HL) contribution

Substituting the low-mode part of the spectral decomposition of one of the two quark propaga-
tors, the HL part of the two-point current-current correlation function then becomes

𝐶𝐻𝐿 =
1
4

∑︁
𝑛

∑︁
𝒚

[
⟨𝑛|𝑦⟩𝑈𝜈 (𝑦)𝑆(𝑦 + 𝜈̂, 𝑥 + 𝜇̂)𝑈†

𝜇 (𝑥)
⟨𝑥 |𝑛⟩
𝜆𝑛

+ ⟨𝑛|𝑦⟩𝑈𝜈 (𝑦)𝑆(𝑦 + 𝜈̂, 𝑥)𝑈𝜇 (𝑥)
⟨𝑥 + 𝜇̂ |𝑛⟩

𝜆𝑛

+ ⟨𝑛|𝑦 + 𝜈̂⟩𝑈†
𝜈 (𝑦)𝑆(𝑦, 𝑥 + 𝜇̂)𝑈†

𝜇 (𝑥)
⟨𝑥 |𝑛⟩
𝜆𝑛

+ ⟨𝑛|𝑦 + 𝜈̂⟩𝑈†
𝜈 (𝑦)𝑆(𝑦, 𝑥)𝑈𝜇 (𝑥)

⟨𝑥 + 𝜇̂ |𝑛⟩
𝜆𝑛

]
(13)

To effect the full volume average, each low mode is used as a source for the high mode part of the
propagator in Eq. (13). The price to pay is one quark propagator inversion for each eigenvector

4
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on each time slice, or a total of 𝑁𝑇 × 2𝑁low sources. Note 𝑁low is the number of preconditioned
Dirac operator low-modes, and there are two low-modes of the full Dirac operator for each. To
dramatically reduce the cost, we form a linear combination of the low-mode sources on a given time-
slice using a unique random number for each and contract at the sink with the same random number
which kills the unwanted cross-terms on average. While this adds random noise to the calculation,
we find the average over low-modes still wins to reduce the final statistical noise. Furthermore we
can systematically reduce the noise by doing more “hits” with additional random-sources.

𝑚𝜋 (MeV) 𝑎 (fm) size 𝐿 (fm) 𝑚𝜋𝐿 𝑁low
# configs
(LL-HL-HH)

130 0.08787 643 × 96 5.62 3.66 4000 31-31-31
134 0.042 1443 × 288 6.048 3.95 4000 6-13-17

Table 1: Lattice simulation details. “𝑁low” is the number of low-modes of the preconditioned Dirac operator.
The number of configurations used for measurements in this study are given in the last column. The HISQ
2+1+1 flavor ensembles used here were produced by the MILC collaboration.

We use configurations generated by the MILC Collaboration [11, 12] with 2+1+1 flavors of
HISQ quarks. The new calculations are done on the two ensembles shown in Table 1. The first was
used in our previous calculations [9, 10] and the second is a new one with lattice spacing 0.042 fm,
which is the finest to date. Both have roughly the physical pion mass, and we have computed 8000
low-modes of the full Dirac operator on each.

4.2 Low-low (LL) contribution

The LL correlation function is easily constructed using the meson fields in Eq. (12),

𝐶𝐿𝐿 =
1
4

∑︁
𝑚,𝑛

∑︁
®𝑥

1
𝜆𝑚𝜆𝑛

[
Λ†

𝜇 (𝑥)𝑚𝑛Λ
†
𝜈 (𝑦)𝑛𝑚 + Λ†

𝜇 (𝑥)𝑚𝑛Λ𝜈 (𝑦)𝑛𝑚

+ Λ𝜇 (𝑥)𝑚𝑛Λ
†
𝜈 (𝑦)𝑛𝑚 + Λ𝜇 (𝑥)𝑚𝑛Λ𝜈 (𝑦)𝑛𝑚

]
, (14)

where 𝜆𝑛 is shorthand for 𝑖𝜆𝑛 + 𝑚. The cost of the meson field scales linearly in the size of the
lattice and quadratically with the number of eigenvectors which is prohibitive when both are large
as in the case of the 1443 × 288 lattice.

To significantly speedup the calculation, we “sparsen” the eigenvectors by omitting some
number of sites in a regular pattern, 𝑖.𝑒., omit 𝑠 consecutive points, evenly spaced, in each direction.
This is increasingly effective as 𝑎 → 0 since nearby points will be more and more correlated,
and including them in the average does not meaningfully improve the statistical error. Sparsening
also drastically reduces the memory footprint which is important if later we decide to increase the
number of eigenvectors.

To ensure we preserve the spin-taste structure of the staggered fermion currents, the sparsening
is done by choosing the location for a hypercube randomly on a given time-slice, and then we omit
every 𝑠 number of hypercubes in each spatial direction. In other words we always keep all points in
a kept hypercube. By randomly choosing the initial hypercube on a time-slice we are guaranteed
to project onto zero momentum in the average. Sparsening by a factor (𝑠, 𝑡) reduces the size of
eigenvectors required to compute our meson fields from 𝑁3

S × 𝑁T to (𝑁S/𝑠)3 × (𝑁T/𝑡).

5
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4.3 High-high (HH) contribution

The HH part of the correlation function dominates the small Euclidean time regime so has
exponentially smaller errors compared to the long-distance part. We compute the HH part on a
regular, sparse, grid of point sources, as before [9, 10], except now we subtract off the low-mode
part. Finally, all parts of the correlation function can be performed inside an AMA framework
where most of the components are computed approximately, and therefore relatively cheaply, and
corrected with exact (to numerical precision) solves infrequently [13].

5. Results and Conclusions

For the 643 ensemble, we compare our older results for the summand to the newer results in Fig.
2. The new method reduces the number of solves from 𝑁T × 2𝑁low to 𝑁T × 𝑁hits. One can see the
reduction in errors in the long-distance region with the new data, especially for 10 hits. The error
contributions from the HL part of the correlation function appear to be significantly suppressed
from the LL part (see Fig. 3). Our current method, which involves using a “1 hit” approach, has
demonstrated an improvement of 6.78% for the total error compared to the old method. This
improvement becomes more pronounced when employing a “10 hits” approach, yielding a 23.7%
improvement within the long-distance window of 2.3 − 3.3 fm.

Figure 2: Comparision of the summand in Eq. 7 between our old method and new method for the 643

ensemble.

6
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Figure 3: Statistical errors on the summand in Eq. (7). Comparison between number of hits (left) and
comparison between old and new method (right).

We emphasize that the LL part remains the dominant source of uncertainty in the correlation
function calculation. As mentioned earlier, to minimize the cost of computing the LL part, we
implement sparsening to generate the meson fields. For demonstration purposes, we have used 800
low modes on the 643 lattice for one configuration (see Fig. 4). By applying sparsening with a
factor of 2(or 4) in each spatial dimension, the number of sites at both the source and sink is reduced
by a factor of 8(or 64). This reduction lead to a substantial increase in computational speed for the
meson fields.

Figure 4: LL contribution from contracting the meson fields with, and without, sparsening the low-modes.

Although these techniques show significant potential, further studies and research are required
to fully assess the trade-offs involved and the broader applicability of this approach.

5.1 Preliminary Results on the 1443 × 288 lattice

Simulations on finer lattices are needed to determine whether the R-ratio and lattice values are
consistent. As a first step we have computed preliminary values of 𝑎HVP

𝜇 for two windows [14],
which are given in Tab. 2. We have implemented the new HL method, but not yet the sparsening
of the LL part. For the HL part, we use one hit on each of 288 time-slices rather than more hits

7
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on fewer time slices. For the HH part, we use 43 point sources on eight time slices, or 512 sources
evenly spread over the lattice volume. The summand in Eq. (7) is shown in Fig. 5 (left panel).

0.000 0.005 0.010 0.015 0.020 0.025
a2 (fm2)

200

201

202

203

204

205

206

207

208

aW

Aubin, et al., 2022
0.042 fm, preliminary

Figure 5: Summand in Eq. (7) for the 1443 ensemble (left) and uncorrected results for the intermediate
window value. The new point at 𝑎 = 0.042 fm (see Table 2) is compared with our earlier results [10] (right).
Errors shown are statistical only.

𝑎
HVP,win
𝜇 × 1010 window (𝑡0, 𝑡1,Δ) (fm)

206.9(45) (0.4, 1.0, 0.15)
94.6(4.16) (1.5,1.9,0.15)

Table 2: 𝑎
HVP,win
𝜇 × 1010 for two different windows computed on the 1443 ensemble. Errors are statistical.

The (uncorrected) results for the windows in Tab. 2 appear promising, even with few mea-
surements. Calculations on more configurations are proceeding which will provide a critical test
of the new methods for the long-distance window. Although the method requires the added effort
of computing HL separately, this trade-off is justified by the reduction of errors following the full
volume average of the low-modes. Moreover, the use of fewer sources for the HH part, now free
from the additional noise contributed by the HL part, enhances computational efficiency. Likewise,
sparsening the LL part leads to a dramatic speedup. These improvements are expected to accelerate
computations, particularly on finer lattices as our work progresses with the 1443 ensemble.
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