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We report on the calculation of the inclusive semileptonic decay of the 𝐷𝑠 meson on the lattice.
We simulate the 𝐷𝑠 → 𝑋𝑠ℓ𝜈ℓ process with Möbius domain-wall charm and strange quarks,
whose masses are approximately tuned to their physical values. Our simulations cover the whole
kinematical region. The focus of this work is to present updates on our strategies towards estimating
the systematic uncertainties in the determination of the inclusive decay rate. We specifically focus
on the systematic errors due to the choice of our approximation strategy and finite-volume effects.
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1. Introduction

We update on our work to calculate the inclusive semileptonic decay rate of the 𝐷𝑠-meson
with an emphasis on our progress in estimating systematic uncertainties. Namely, we will focus on
the systematic error associated with the Chebyshev approximation of the kernel function [1] as well
as the error due to finite-volume effects [2]. For more details on the analysis strategy employed
to analyze inclusive semileptonic decay rates in lattice QCD, we refer to [1, 3–7]. In particular,
the most recent work [8] presents a comparison between the Chebyshev and Hansen-Lupo-Tantalo
(HLT) approaches to approximate the kernel function in the energy integral.

The remainder of this paper is structured as follows. We present a brief review of the inclusive
semileptonic decay on the lattice in Sec. 2. In Sec. 3 we discuss the systematic errors of interest in
our ongoing work, and our strategies on how to estimate them. The application of our methods is
then performed in Sec. 4. Finally, Sec. 5 contains our conclusions.

2. Inclusive semileptonic decays on the lattice

We start by writing the total decay rate of the inclusive semileptonic decay as

Γ ∼
∫ 𝑞𝑞𝑞2

max

0
𝑑𝑞𝑞𝑞2

√︁
𝑞𝑞𝑞2

2∑︁
𝑙=0

𝑋̄ (𝑙) (𝑞𝑞𝑞2) , (1)

where 𝑋̄ (𝑙) (𝑞𝑞𝑞2) contains the integral over the hadronic final-state energy 𝜔

𝑋̄ (𝑙) (𝑞𝑞𝑞2) =
∫ 𝜔max

𝜔min

𝑑𝜔𝑊 𝜇𝜈 (𝑞𝑞𝑞, 𝜔)𝑘 (𝑙)𝜇𝜈 (𝑞𝑞𝑞, 𝜔)

=

∫ ∞

𝜔0

𝑑𝜔𝑊 𝜇𝜈 (𝑞𝑞𝑞, 𝜔)𝐾 (𝑙)
𝜇𝜈 (𝑞𝑞𝑞, 𝜔) ,

(2)

with the hadronic tensor 𝑊 𝜇𝜈 (𝑞𝑞𝑞, 𝜔) and a kinematical factor 𝑘 (𝑙)𝜇𝜈 (𝑞𝑞𝑞, 𝜔) depending only on the
three-momentum 𝑞𝑞𝑞 and the energy 𝜔 of the hadronic final-state. In the second line, we shift the
integration limits 𝜔min → 𝜔0 and 𝜔max → ∞. While the lower limit 0 ≤ 𝜔0 ≤ 𝜔min can be
freely chosen as there are no states below the lowest-lying energy state 𝜔min, in order to cut off all
contributions above 𝜔max, we introduce a step function 𝜃 (𝜔max − 𝜔) which is combined into the
kernel function 𝐾 (𝑙)

𝜇𝜈 (𝑞𝑞𝑞, 𝜔) = 𝑘 (𝑙)𝜇𝜈 (𝑞𝑞𝑞, 𝜔)𝜃 (𝜔max − 𝜔). It is defined as

𝐾
(𝑙)
𝜇𝜈,𝜎 (𝑞𝑞𝑞, 𝜔) = 𝑒2𝜔𝑡0

√︁
𝑞𝑞𝑞2

2−𝑙
(𝑚𝐷𝑠

− 𝜔)𝑙𝜃𝜎 (𝑚𝐷𝑠
−

√︁
𝑞𝑞𝑞2 − 𝜔) , (3)

where the sharp cut of the Heaviside function has been replaced by a smooth one by employing a
sigmoid function with smearing width 𝜎. The parameter 𝑡0 is introduced to avoid the contact term,
which receives contributions from the opposite time ordering corresponding to unphysical states.

On the lattice we compute four-point correlators𝐶𝜇𝜈 (𝑞𝑞𝑞, 𝑡), which can be related to the hadronic
tensor through a Laplace transform

𝐶𝜇𝜈 (𝑞𝑞𝑞, 𝑡) =
∫ ∞

0
𝑑𝜔

1
2𝑀𝐷𝑠

⟨𝐷𝑠 |𝐽†𝜇 (𝑞𝑞𝑞, 0)𝛿(𝐻̂ − 𝜔)𝐽𝜈 (𝑞𝑞𝑞, 0) |𝐷𝑠⟩ 𝑒−𝜔𝑡

=

∫ ∞

0
𝑑𝜔𝑊𝜇𝜈 (𝑞𝑞𝑞, 𝜔)𝑒−𝜔𝑡 ,

(4)
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where 𝐽𝜈 (𝑞𝑞𝑞, 0) are the Fourier transformed currents. The above definition corresponds to the
spectral representation of 𝐶𝜇𝜈 (𝑞𝑞𝑞, 𝑡). By comparing Eqs. (2) and (4) it becomes apparent that if
the kernel can be approximated using some polynomial of exp(−𝑎𝜔) (where 𝑎 is set to one for
simplicity), lattice correlators can be employed to construct an approximation for 𝑋̄ (𝑙) (𝑞𝑞𝑞2). We
thereby reduced the challenge of calculating the inclusive decay rate to one of finding an appropriate
polynomial approximation of the kernel function 𝐾 (𝑙)

𝜇𝜈,𝜎 (𝑞𝑞𝑞, 𝜔).
Our analysis employs the Chebyshev polynomial approach [3]. The approximation of the kernel

function in terms of shifted Chebyshev polynomials 𝑇𝑗 (𝑥) with 𝑥 = 𝑒−𝜔 is given by

⟨𝐾 (𝑙)
𝜎 ⟩𝜇𝜈 =

1
2
𝑐
(𝑙)
𝜇𝜈,0 ⟨𝑇0⟩𝜇𝜈 +

𝑁∑︁
𝑘=1

𝑐
(𝑙)
𝜇𝜈,𝑘

⟨𝑇𝑘⟩𝜇𝜈 . (5)

Here, 𝑐 (𝑙)
𝜇𝜈,𝑘

are analytically known coefficients and ⟨𝑇𝑘⟩ are referred to as Chebyshev matrix ele-
ments. We use the notation ⟨·⟩ ≡ ⟨𝜓𝜇 | · |𝜓𝜈⟩ /⟨𝜓𝜇 |𝜓𝜈⟩, where |𝜓𝜈 (𝑞𝑞𝑞)⟩ = 𝑒−𝐻̂𝑡0𝐽𝜈 (𝑞𝑞𝑞, 0) |𝐷𝑠⟩ /

√︁
2𝑀𝐷𝑠

.
For simplicity, we skip the indices 𝜇, 𝜈 in the following.

In practice, the Chebyshev matrix elements are extracted from a fit to the correlator data
following

𝐶̄ (𝑡) =
𝑡∑︁
𝑗=0
𝑎̃
(𝑡 )
𝑗

⟨𝑇𝑗⟩ , (6)

where 𝑎̃ (𝑡 )
𝑗

are obtained from the power representation of the Chebyshev polynomials, see (A.24)
and (A.25) of [8] for the definition of 𝑎̃ (𝑡 )

𝑗
, and 𝐶̄ (𝑡) is constructed from the correlator as 𝐶̄ (𝑡) =

𝐶 (𝑡 + 2𝑡0)/𝐶 (2𝑡0). To maximize the available data, we choose 𝑡0 = 1/2. We use priors to ensure
that the fitted Chebyshev matrix elements satisfy the condition that the Chebyshev polynomials are
bounded, i.e.

��⟨𝑇𝑗⟩�� ≤ 1. We refer to [8] for more details on the Chebyshev approximation and its
practical application.

3. Systematic errors in the inclusive decays

We start by introducing the systematic errors of interest in this work. Namely, we analyze
the errors introduced by the approximation [1] and due to finite-volume effects [2]. A proper
reconstruction of the inclusive decay rate requires the ordered limit

lim
𝜎→0

lim
𝑉→∞

𝑋̄𝜎 (𝑞𝑞𝑞2) (7)

of first taking the infinite-volume limit, followed by taking the limit where the smearing of the
kernel function is set to zero.

Understanding of finite-volume effects started with the seminal work of Lüscher [9] and is
of great importance to many calculations performed on the lattice. The calculation of inclusive
decays may suffer from substantial finite-volume effect, as it involves multi-body final states, whose
energy levels are discretized by the boundary condition due to the finite volume. Conventionally,
the infinite-volume limit is estimated by extrapolating the results from calculations of different
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volumes. In this work, on the other hand, we develop a modeling strategy to estimate finite-volume
corrections under some assumptions that will be elaborated on in Sec. 3.1.

The error due to the approximation is a combination of two effects: first, the smoothing
of the kernel function requires the 𝜎 → 0 limit, and secondly, the truncation of the Chebyshev
approximation at polynomial order 𝑁 requires the 𝑁 → ∞ limit. We address this in Sec. 3.2.

3.1 Finite-volume effects

The extraction of the spectral density from the correlators 𝐶 (𝑡) with a finite set of discrete
time slices is a well-known ill-posed problem on the lattice. Even assuming that the problem
could be solved for a correlator in a finite volume, 𝐶𝑉 (𝑡), with 𝑉 = 𝐿3 denoting the volume of
the lattice, and hence, the spectral density 𝜌𝑉 (𝜔) would be reconstructed, a qualitative difference
from its infinite-volume counterpart 𝜌(𝜔) still remains. While the infinite-volume spectral density
is a smooth function, 𝜌𝑉 (𝜔) is given by a sum of 𝛿-functions representing allowed states in a finite
volume.

The smearing 𝜎 discussed in Sec. 2 allows us to circumvent this problem. By increasing
the smearing width 𝜎, the problem is made arbitrarily mild and the smeared spectral density
𝜌𝜎,𝑉 (𝜔) smoothly approaches its infinite-volume counterpart. The inclusive decay rate is eventually
recovered by taking the limits (7).

The finite-volume effects for the spectral density can be sizeable for multi-hadron states, since
the allowed states are controlled by the boundary condition. For example, corrections of O(1/𝐿3)
are expected for the energy spectrum of two-body states. While these would be reduced significantly
for the smeared spectral density, their size and scaling in the 𝑉 → ∞ limit may be non-trivial. We
therefore introduce a model to investigate the volume dependence.

Among various multi-hadron states, our model concerns the two-body final states, specifically
𝐾𝐾̄ final states, which are expected to give the dominant contribution. Assuming the rest frame,
the infinite volume spectral density for the vector current (𝐽 = 1) can be written in the form

𝜌(𝜔) = 1
64𝜋

𝜔2

(
1 −

4𝑚2
𝐾

𝜔2

)3/2

, (8)

if we ignore interactions between 𝐾 and 𝐾̄ . The finite-volume expression is given by

𝜌𝑉 (𝜔) =
𝜋

𝑉

∑︁
𝑞𝑞𝑞

𝑞𝑞𝑞2

4(𝑞𝑞𝑞2 + 𝑚2
𝐾
)
𝛿

(
𝜔 − 2

√︃
𝑞𝑞𝑞2 + 𝑚2

𝐾

)
. (9)

In the finite volume, the possible values of 𝑞𝑞𝑞2 for a fixed volume 𝑉 are given by 𝑞𝑞𝑞 = 2𝜋𝑙𝑙𝑙/𝐿, where
𝑙𝑙𝑙 = (𝑙1, 𝑙2, 𝑙3) is a vector of integers 𝑙𝑖 in 𝐿/2 < 𝑙𝑖 ≤ 𝐿/2.

In Sec. 4, we will verify that the model gives a good description of the finite-volume data of
inclusive decays, and use it for an extrapolation towards the infinite volume.

3.2 Finite polynomial approximation

A first attempt to estimate the systematic error originating from the Chebyshev approximation
and the smearing of the kernel function was made in [1]. The two relevant limits are 𝜎 → 0 and

4
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Figure 1: Comparison to highlight the differences in the kernel function depending on the choice of the
Heaviside or sigmoid function. The Heaviside function in both plots is represented by the solid line, while
the sigmoid function uses the dashed line. The smearing width of the sigmoid function is 𝜎 = 0.1.

𝑁 → ∞. In Fig. 1 we visualize the change of the kernel function (3) for 𝑙 = 0, 2 before and after
smoothing with the sigmoid function.

Our first step is to combine the two required limits by identifying each order of the Chebyshev
polynomials as a frequency component of the target function, while interpreting the smearing as
the width of the Heaviside function of the kernel. Under these considerations, we introduce the
relation between the polynomial order and the smearing as

𝜎 =
1
𝛼𝑁

, (10)

where 𝛼 is a factor which we set equal to one. In this way, the 𝑁 → ∞ limit now directly translates
to the 𝜎 → 0 limit.

Our error estimate is then based on the mathematical property that the Chebyshev polynomials
are bounded, i.e. |𝑇𝑗 (𝑥) | ≤ 1. We redefine our approximation as

𝐾̄
(𝑙)
𝜎 (𝜔) ≃ 𝑐0

2
+
𝑁Cut∑︁
𝑗=1

𝑐 𝑗𝑇𝑗 (𝑒−𝜔) +
𝑁∑︁
𝑘=

𝑁Cut+1

𝑐𝑘𝑇𝑗 (𝑒−𝜔) , (11)

where 𝑁Cut is the highest order of the Chebyshev matrix elements that can be properly reconstructed
from the data following (6). The second term, estimating higher orders, is obtained by repeatedly
drawing a random set of Chebyshev matrix elements from a uniform distribution in [−1, +1] and
taking the standard deviation of this sample. It only contributes to the error and does not change
the central value.

4. Results

4.1 Systematic error - Finite-volume corrections

We consider the decomposition of the spectral density

𝜌(𝜔) = 𝜌0𝛿(𝜔 − 𝑚𝑋) + 𝜌Ex(𝜔) , (12)

5
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Figure 2: Left: Four-point correlation function for the spatial components ⟨𝐴†
𝑖
(𝑡)𝐴𝑖 (0)⟩with zero momentum

insertion. The dashed line represents the single-exponential fit to determine the ground state. The black
dash-dotted line represents the fit results using the prescription (13). Right: A comparison of the model
prediction and the lattice data for the finite-volume corrections. The model prediction is obtained for the
smeared and unsmeared kernel, respectively, as a function of the threshold value𝜔th for two volumes𝑉 = 483

(dashed) and 2563 (dotted). The smeared kernel is denoted with 𝜎 in the subscript. The lattice data are
obtained using the Chebyshev approximation for the full data set. The physical threshold 𝜔phys

th is highlighted
using a star symbol.

into a ground state contribution and a contribution containing all excited states, specifically focusing
on the two-body states defined in (8). We fit the lattice data with

𝐶 (𝑡) = 𝐴0𝑒
−𝐸0𝑡 + 𝑠(𝐿)

∑︁
𝑖

𝐴𝑖𝑒
−𝐸𝑖 𝑡𝐹 (𝐸𝑖) , (13)

where we pick out the ground state contribution and collect all excited-state contributions into the
sum in the second term. The allowed energy 𝐸𝑖 is given by the momentum 𝑞𝑞𝑞 in (9) as 2

√︃
𝑚2
𝐾
+ 𝑞𝑞𝑞2;

the corresponding 𝐴𝑖 is also inferred from (9). Effectively, 𝐴𝑖 determines the relative weights
between different energy states normalized to the amplitude of the lowest energy state. To obtain a
more realistic picture, we include an additional factor 𝐹 (𝐸𝑖) motivated by the kaon form factor of
the vector-dominance form 𝐹 (𝐸) = 1/(𝐸2 − 𝑚2

𝜙
). This form factor does not take into account the

initial 𝐷𝑠, but still provides a reasonable model to describe the process 𝐷𝑠 → 𝐾𝐾̄ℓ𝜈 with a free
parameter 𝑠(𝐿).

As a case study, we consider the contribution of spatial current insertions 𝐴†
𝑖
(𝑡)𝐴𝑖 (0) to

𝑋
∥
𝐴𝐴

(𝑞𝑞𝑞2) at zero momentum. In this channel, the lightest hadronic state is the 𝜙 meson, which has
𝐽𝑃 = 1−1. Fig. 2 shows the correlator and our estimate of finite-volume corrections. Focusing
first on the correlator, we show the single exponential fit to the lattice data as well as the fit result
using our model prescription (13). The fit using the model describes the correlator including the
short-distance region where excited-state contributions are most prevalent.

We estimate the finite-volume corrections for two volumes 483 and 2563. The former corre-
sponds to our lattice data of the physical volume 𝐿 ≃ 2.6 fm, while the latter is used as a proxy
for the infinite-volume limit. The results are shown as a function of the upper limit of the energy
integral 𝜔th. For the physical semileptonic decay process, the upper limit of integration is fixed by
𝜃 (𝜔phys

th − 𝜔), where 𝜔phys
th = 𝑚𝐷𝑠

−
√︁
𝑞𝑞𝑞2 is the threshold given by the kinematics. Here, we take

6
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(c) 𝑞𝑞𝑞 = (0, 1, 1)
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Figure 3: Errors of 𝑋̄ ∥
𝑉𝑉

(𝑞𝑞𝑞2) as a function of 𝜎 = 1/𝑁 . Estimates are plotted for all values of 𝑞𝑞𝑞 used
in our simulations. The gray band represents the expected ground state contribution. The empty symbols
are obtained from applying the Chebyshev approximation on the full data set, while the filled symbols are
obtained treating the ground-state contribution exactly and using the Chebyshev approximation only on the
remaining correlator. We show the error bars obtained assuming the 1𝜎 band using the error estimate for a
uniform distribution of the Chebyshev matrix elements.

advantage of choosing arbitrary values of 𝜔th to investigate the validity of our model. We observe a
nice agreement between the lattice data (data points) and the model prediction (curves). Within the
model predictions, we do not observe any strong dependence on the volume or smearing in the case
considered here. This is a consequence of the kernel used in this example, as the spatial currents
contribute only with 𝑙 = 2 in 𝑋 ∥

𝐴𝐴
(𝑞𝑞𝑞2). Comparison with Fig. 1 suggests that the kernel smoothly

approaches the threshold and no strong dependence on the smearing is observed. This study needs
to be repeated for other channels as this behavior is not necessarily expected for all channels.

4.2 Systematic error - Chebyshev approximation

We apply the estimate for the Chebyshev approximation as discussed in Sec. 3.2 to 𝑋̄ ∥
𝑉𝑉

(𝑞𝑞𝑞2)
for all values of 𝑞𝑞𝑞 used in our simulations. The results are shown in Fig. 3 as a function of 𝜎 = 1/𝑁 .
We compare the results for two choices on how the data analysis is applied through the Chebyshev
reconstruction. We either use the full data set to construct an approximation or subtract the ground
state from the correlator before applying the approximation to the remaining correlator. For the latter

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
4
5

Systematic effects in the lattice calculation of inclusive semileptonic decays R. Kellermann

choice, the ground-state contribution is treated exactly in the energy integral, while the Chebyshev
approximation takes care of the excited-state contributions only. The second approach has the
advantage that the ground state can be extracted quite reliably from large time separations, and the
overall error is minimized because the ground state is expected to give the leading contribution to
the total inclusive rate. To provide a reference value, the estimate under the assumption that only
the ground state contributes is also included in the plots.

Without subtracting the ground state (open circles), the estimated truncation error of the
Chebyshev polynomials grows rapidly especially for larger momenta, where the phase space be-
comes narrow. Their central value also drifts significantly as the smearing width gets smaller.
Treating the ground state exactly (filled circles), the systematic error remains stable. Indeed, the
excited-state contributions are insignificant in this channel, and the results are consistent with those
of the ground state (gray band).

5. Conclusions

We investigated the systematic effects in the analysis of the inclusive semileptonic decays.
Corrections due to finite volume are modeled to control the infinite-volume extrapolation, and
found to be insignificant in our setup. The truncation error of the Chebyshev polynomials was
found to be important, especially for large recoil momenta. We can largely reduce the error
by treating the ground state exactly and applying the inclusive analysis only to the excited-state
contributions.
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