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The hadronic light-by-light contribution to the muon
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Hadronic contributions dominate the uncertainty of the Standard Model prediction for the anoma-
lous magnetic moment of the muon. In this work, we present results on the hadronic light-by-light
contribution obtained from the evaluation of the hadronic four-point function of electromagnetic
currents using the position-space formalism developed by the Mainz group. The simulations are
performed with staggered fermions directly at the physical point. Several physical volumes are
used to estimate finite volume effects. This direct lattice study is supplemented by considering the
contribution of the light pseudoscalar pole in both finite and infinite volumes, where we reuse the
pseudoscalar transition form factors that have been evaluated in previous simulations on the same
ensembles.
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HLbL contribution to the muon 𝑔−2 Christian Zimmermann

Figure 1: Feynman diagram representing the hadronic light-by-light (HLbL) contribution. The red blob
corresponds to the hadronic part.

1. Introduction

Hadronic contributions remain the major source of uncertainties in the Standard Model (SM)
determination of the anomalous magnetic moment of the muon, which is quantified by 𝑎𝜇 =

(𝑔𝜇 − 2)/2. Since uncertainties on the experimental side are constantly reduced by ongoing
experiments [1], theoretical calculations need to be improved as well, in order to make suitable
comparisons and discover potential hints of new physics. A summary of the current state of
research is given by [2]. There are two main contributions in the hadronic sector, the hadronic
vacuum polarization (HVP) and the hadronic light-by-light (HLbL) scattering. Both can be studied
on the lattice, see [3–6] for the HLbL contribution.

In these proceedings, we summarize the current status of our research regarding the direct
calculation of the HLbL contribution by evaluating the corresponding four-point correlation on the
lattice. More details can be found in [7].

2. Lattice calculation with staggered fermions

Hadronic light-by-light (HLbL) scattering contributes to the anomalous magnetic moment of
the muon at O(𝛼3) of the fine structure constant 𝛼. The corresponding Feynman diagram is shown
in figure 1. Its value is given by the master formula [3, 8]

𝑎hlbl
𝜇 = −

𝑚𝜇𝑒
6

3

∫
d4𝑦

∫
d4𝑥 Lsym

[𝜌,𝜎 ];𝜇𝜈𝜆(𝑥, 𝑦)
∫

d4𝑧 𝑧𝜌 Π𝜇𝜈𝜎𝜆(𝑥, 𝑦, 𝑧)

= 2𝜋2
∫
|𝑦 |

|𝑦 |3 𝑓 (𝑦) =
∫
|𝑦 |

I(|𝑦 |) , (1)

where Lsym is a symmetrized version of the QED kernel L (Λ) with Λ = 0.4 [9], which represents
the photon lines and the muon line in figure 1. The hadronic part depicted by the red blob is given
by the four-current correlation function, which reads

Π𝜇𝜈𝜎𝜆(𝑥, 𝑦, 𝑧) = ⟨ 𝑗𝜇 (𝑥) 𝑗𝜈 (𝑦) 𝑗𝜎 (𝑧) 𝑗𝜆(0)⟩ . (2)

The electromagnetic current 𝑗𝜇 (𝑥) takes into account contributions by the light, strange and charm
quarks. After executing the integrals over 𝑥 and 𝑧, the remaining integrand 𝑓 (𝑦) is Lorentz invariant.
Therefore, it is sufficient to sample the integrand for only a few values of |𝑦 |. The integral over the
3-sphere is done by taking into account the factor 2𝜋2 |𝑦 |3. We denote the weighted integrand by
I(|𝑦 |).
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Figure 2: The three connected Wick contractions contributing to the four-current correlator (2). We denote
the corresponding contractions Πconn, (1) , Πconn, (2) , Πconn, (3) from left to right.
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Figure 3: The leading disconnected (2+2) diagrams contributing to the four-current correlator (2). We
denote the corresponding contractions Π (2+2) , (1) , Π (2+2) , (2) , Π (2+2) , (3) from left to right.

In the context of a lattice simulation, the four-current correlation function decomposes in 24
Wick contractions, which can be grouped in five types. These are classified by the number of
currents connected by quark lines in each quark-disconnected part. In these proceedings we only
consider connected diagrams and leading disconnected (2+2) diagrams. For the first kind, there are
six different diagrams appearing pairwise with inverted fermion flow. They are depicted in figure
2. For the (2+2) contribution, there are three different diagrams shown in figure 3

In order to reduce the computational cost, we use translational invariance to reduce two of the
connected diagrams to the diagram Πconn, (1) , where no sequential inversions are needed:

𝑎conn
𝜇 =

𝑚𝜇𝑒
6

3
2𝜋2

∑︁
|𝑦 |

|𝑦 |3
∑︁
𝑥,𝑧

Lsym
[𝜌,𝜎 ];𝜇𝜈𝜆(𝑥, 𝑦) (𝑥𝜌 − 3𝑧𝜌) Πconn, (1)

𝜇𝜈𝜎𝜆
(𝑥, 𝑦, 𝑧) . (3)

A similar approach is done for the (2+2) contribution. In this case, there are two versions, where
all diagrams are reduced to either Π (2+2) , (1) or Π (2+2) , (2) . In the end, we take the average of both
versions in order to improve statistics.

The present calculations are performed using staggered fermions. The sums over 𝑥 and 𝑧 in
(1) are performed explicitly in the lattice simulation, so that we are left with a Lorentz invariant
quantity that depends only on |𝑦 |. However, since this is a position space quantity, the presence of
staggered fermions leads to contaminations from 16 taste partners. In order to project onto the taste
singlet, we apply a smearing function w.r.t. 𝑦 to the quantity 𝑓 (𝑦) (see (1)). For more details, see
[7, 10].

3. Simulation and Results

The present calculations are carried out using ensembles generated by the BMW collaboration
[11, 12]. The ensembles employ 𝑁 𝑓 = 2+1+1 dynamical staggered fermions with four steps of stout
smearing. The pseudoscalar masses correspond to the physical ones. The simulations are performed
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(a) 𝑎 = 0.1097 fm, 𝐿 = 3 fm
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(b) 𝑎 = 0.1097 fm, 𝐿 = 6 fm

Figure 4: Integrand for the connected (blue) and 2+2 (green) contribution for 𝑎 = 0.1097 fm and 𝐿 = 3 fm
(a) or 𝐿 = 6 fm (b), respectively.

for three different volumes (𝐿 = 3, 4, 6 fm) and for lattice spacings 0.06 fm ≤ 𝑎 ≤ 0.13 fm. For the
light quark contribution we focus on the two larger lattice volumes.

3.1 Light quark contribution

Figure 4 shows the integrand of the connected (blue) and (2+2) contributions (green) for
𝐿 = 3 fm (left) and 𝐿 = 6 fm (right), both for lattice spacing 𝑎 ≈ 0.11 fm. The long distance region
is dominated by contributions from the pseudoscalar poles 𝜋0, 𝜂 and 𝜂′. Hence we can use input
from lattice calculations of the corresponding transition form factors (TFFs) to improve our lattice
results. The corresponding calculation has been performed on the same ensembles as in the present
study [13]. To this end, we write the contribution to the four-current correlation function (2) by
the pole 𝑃 and denote the corresponding integrand by I𝑃 ( |𝑦 |). The functional form of the TFFs
is approximated by light meson dominance (LMD) or vector meson dominance (VMD) models,
respectively. For details on that, see [7]. The integrand calculated from the pseudoscalar pole
data is also plotted in figure 4 (dashed lines for LMD, dotted for VMD). It matches perfectly for
large distances with the four-point data for both volumes. The pseudoscalar pole contribution can
be employed in a two-fold way. First we can estimate finite volume corrections of the light quark
contribution for a given volume:

𝑣𝑃 = 𝑎𝑃𝜇 (∞) − 𝑎𝑃𝜇 (𝑉) . (4)

Second, we replace the original four-point function integrand for large distances |𝑦 | > |𝑦 |cut in a
manner that the overall pseudoscalar pole contribution is small compared to the statistical error:

𝑎ℓ𝜇 =

∫ |𝑦 |cut

0
d|𝑦 |

[
Iconn( |𝑦 |)+I (2+2) ( |𝑦 |)

]
+
∫ ∞

|𝑦 |cut

d|𝑦 |
[
I 𝜋 ( |𝑦 |)+I𝜂 ( |𝑦 |)+I𝜂′ ( |𝑦 |)

]
+𝑣𝜋+ 𝑣𝜂+ 𝑣𝜂

′
.

(5)

Similar approaches are derived for the connected and (2+2) contributions individually. Figure 5(a)
shows the result of (5) depending on |𝑦 |cut (dashed lines). The contribution of the lattice data (solid
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Figure 5: Left: The dashed line shows the result for (5) (red) depending on |𝑦 |cut. Analogous results
are shown for the connected (blue) and (2+2) (green) contributions individually. The solid line shows the
corresponding contributions from the lattice data, while the dotted line is the pseudoscalar-pole contribution.
Right: Continuum extrapolation for the total light contribution.

lines) and the pseudoscalar integrands (dotted lines) are also shown. An alternative to (5) is given
by calculating

𝑎𝜇 = 𝑎no−𝜋
𝜇 + 9

34
𝑎conn,ℓ
𝜇 + 𝑣𝜋 + 𝑣𝜂 + 𝑣𝜂

′
, (6)

where 𝑎no−𝜋
𝜇 is obtained from the integrand (25/34)Iconn,ℓ (𝑦) + I (2+2) (𝑦) [14]. This has already

been used in [6]. This has the advantage that the long-range pion-pole contribution is removed and,
therefore, the integral converges faster, so that the statistical error is smaller.

For the continuum extrapolation we take into account four ensembles for 𝐿 = 4, 6 fm at three
different lattice spacings. This allows us to perform a two parameter fit using the following ansatz:

𝑎ℓ𝜇 (𝑎) = 𝑎cont,ℓ
𝜇 + 𝛽2(Λ𝑎)2 . (7)

Our result reads 𝑎ℓ𝜇 = 122.6(11.6) × 10−11 for the direct calculation and 𝑎ℓ𝜇 = 126.2(9.2) × 10−11

if we use the alternative approach (6). The two extrapolations are plotted in figure 5(b)

3.2 Strange quark contribution

The integrand for the strange quark contributions is shown in figure 6(a) for 𝐿 = 3 fm and
𝑎 = 0.094 fm. The strange contribution is dominated by the connected diagrams and by the
light-strange (2+2) contributions. The latter has negative sign and, therefore, more or less cancels
the signal of the connected diagram. The strange connected contribution has very small statistical
errors. Hence lattice artifacts and finite volume effects become non-negligible.

As ansatz for the continuum extrapolation we generally consider 𝑎2 and 𝑎4 terms, as well as
a scale dependence introduced by powers of 𝛼𝑠 (𝑎−1). Moreover, we have to take into account the
slight miss-tuning of the strange quark mass. Here we use the ratio 𝛿𝑀𝑠𝑠/𝑀phys

𝑠𝑠 as proxy, where
𝑀

phys
𝑠𝑠 = 689.89(49) MeV and 𝛿𝑀𝑠𝑠 is the difference obtained for the given ensemble. The finite

5
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Figure 6: (a) The integrand for the strange quark contributions. For visibility, the strange-strange (2+2)-
contribution is multiplied by a factor of 10. (b,c) Continuum extrapolation for the strange connected
contribution (b) and the strange (2+2)-contribution (c).

Contribution 𝑎𝜇 × 1011

Light total 122.6(11.6)stat
Strange total −1.7(0.8)stat(0.3)sys
Charm total 3.73(5)stat(26)sys

Sub-leading disc. 0.83(25)stat

Total 125.5(11.6)stat(0.4)sys

Table 1: Compilation of our preliminary results for all individual contributions to 𝑎hlbl
𝜇 .

volume effects are taken into account by the exponential term 𝑒−𝐿𝑚𝜋 , where 𝑚𝜋 is the physical pion
mass:

𝑎𝑠𝜇 (𝑎) = 𝑎cont,𝑠
𝜇 + 𝛽2(Λ𝑎)2 + 𝛽4(Λ𝑎)4 + 𝛿2(Λ𝑎)2𝛼𝑛

𝑠 (𝑎−1) + 𝛾
𝛿𝑀𝑠𝑠

𝑀
phys
𝑠𝑠

+ 𝜆𝑒−𝐿𝑚𝜋 . (8)

For the strange connected contribution, we take into account 11 ensembles for 3 different volumes.
We perform different fits where 𝛽4 or 𝛿2 or both are set to zero. These fits are used to estimate the
systematic error. For the same reason we vary the fit range. An exemplary fit is plotted in figure
6(b). As our final result we state 𝑎

conn,𝑠
𝜇 = 3.694(25)stat(8)sys × 10−11.

In the case of the (2+2) contribution, where statistical noise is larger, we can neglect the miss-
tuning and finite volume effects, and perform a two-parameter fit. The result is plotted in figure
6(c). Our continuum value reads 𝑎 (2+2) ,𝑠

𝜇 = −5.4(0.8)stat(0.2)sys × 10−11.

4. Conclusion

We considered all Wick contractions contributing to the hadronic light-by-light scattering
contribution to the anomalous magnetic moment using staggered fermions and at physical masses.
In these proceedings, we focus only on connected and (2+2) diagrams for the light and strange quark
contributions. The light quark contribution has been supplemented by estimates of the tail obtained
from pseudoscalar transition form factor results. This is done in a way so that systematics remain
small compared to the statistical error. The light quark contribution has been found to be the largest
contribution. The result for the strange contribution is even small compared to the target precision

6
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of 10% due to large cancellations between connected in disconnected diagrams. A compilation of
results for the individual contribution is shown in table 1 including our preliminary results for the
charm and sub-leading contributions, which have not been discussed in detail in these proceedings.
Our result for the hadronic light-by-light contribution to the anomalous magnetic moment of the
muon reads:

𝑎hlbl
𝜇 = 125.5(11.6)stat(0.4)sys × 10−11 . (9)

This result is compatible with recent results of other lattice collaborations [3–6]. At the current
stage, the overall uncertainty is around 10%.

We plan to repeat our analysis of the light quark contribution for another ensemble with lattice
spacing 𝑎 ≈ 0.077 fm in order to improve the quality of our continuum extrapolation and, therefore,
to further reduce our overall uncertainty.
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