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1. Introduction

The weak interaction sector of the Standard Model remains the least understood among its
components. The weak interaction naturally enables the violation of parity symmetry and charge-
parity (CP) symmetry. Its interplay with strong interaction processes, contributes to the intricate
nature of flavor symmetry. These symmetry-violating processes provide intriguing opportunities
to test the validity of the Standard Model, as any deviation from its predictions could signal the
existence of new physics. Among such tests, the 𝐾0 − �̄�0 system is particularly compelling, as
the kaon is the lightest meson containing a strange quark. This mixing is a second-order weak
interaction process mediated by the exchange of two 𝑊 bosons. The CP-conserved component
of this system corresponds to the mass difference between the long- and short-lived kaon states
(Δ𝑀𝐾 ), while the CP-violating component is characterized by 𝜀𝐾 . Both parameters have been
experimentally observed, making this system a valuable tool for probing the Standard Model.

The experimental value of Δ𝑀𝐾 is 3.483(6) × 10−12 MeV. Previous perturbative calculations
of Δ𝑀𝐾 treat the charm quark perturbatively, leading to a local Δ𝑆 = 2 operator corresponding to
the kaon bag parameter. However, for this process the perturbative expansion appears to converge
very slowly: the NNLO contribution is as large as 36% of the sum of LO and NLO contributions [1].
This slow convergence highlights the potential benefits of performing a non-perturbative calculation
using lattice QCD. The RBC-UKQCD collaboration has obtained a Δ𝑀𝐾 result using physical
quark masses and a lattice spacing corresponding to 1/𝑎 = 2.36 GeV [2]. However, an improved
calculation is necessary on a physically larger and finer lattice to achieve better control over finite
volume effects and discretization errors and to enable a more reliable continuum-limit extrapolation.
Additionally, a more accurate treatment of the two-pion intermediate state is required to further
refine the results.

The mixing parameter 𝜀𝐾 characterizes indirect CP violation and has an experimental value of
2.228(11) × 10−3. The perturbative calculation of the short-distance contribution to 𝜀𝐾 has been
highly successful, contributing the majority of the total result [1, 3]. However, a small but significant
portion, comprising a few percent, arises from the long-distance contributions. A first-principles
non-perturbative calculation is therefore a natural choice to address this gap. The RBC-UKQCD
collaboration has performed the first calculation of the long-distance part of 𝜀𝐾 using a light quark
mass corresponding to a pion mass 339 MeV and a charm quark mass 968 MeV [4]. We plan to
calculate Δ𝑀𝐾 and 𝜀𝐾 on lattice ensembles with physical quark masses to obtain physical results
with better controlled systematic errors and improved statistics.

2. Kaon Mixing

𝐾0 and �̄�0 mesons are eigenstates of the strong interaction: the 𝐾0 has strangeness +1 and the
�̄�0 has strangeness −1. The Wigner-Weisskopf theory describes the time evolution of neutral kaon
system [5]:

𝑖
𝑑

𝑑𝑡

(
|𝐾0(𝑡)⟩
|�̄�0(𝑡)⟩

)
=

((
𝑀 𝑀00̄
𝑀∗

00̄ 𝑀

)
− 𝑖

2

(
Γ Γ00̄
Γ∗

00̄ Γ

)) (
|𝐾0(0)⟩
|�̄�0(0)⟩

)
, (1)

To preserve CPT symmetry, the diagonal elements must be identical, and the off-diagonal elements
of 𝑀 and Γ are required to satisfy the condition of hermiticity. Experimental results have shown
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that CP violation in the neutral kaon system is very weak: the imaginary parts of the off-diagonal
elements are much smaller than their real parts. Consequently, Δ𝑀𝐾 can be approximated as the
real part of the dispersive off-diagonal term 𝑀00̄:

Δ𝑀𝐾 = 𝑀𝐿 − 𝑀𝑆 = 2Re𝑄 ≃ 2Re𝑀00̄ (2)

The parameter 𝜀𝐾 is related to the ratio of the imaginary part to the real part of 𝑀00̄ as follows:

𝜀𝐾 = 𝑒𝑖𝜙𝜀 sin 𝜙𝜀
(− Im𝑀0̄0

Δ𝑀𝐾
+ Im 𝐴0

Re 𝐴0

)
, (3)

where 𝐴0 represents the amplitude of the 𝐾 → 𝜋𝜋 decay with isospin 0, and the angle 𝜙𝜀 is defined
as:

𝜙𝜀 = tan−1
(

2Δ𝑀𝐾
Γ𝑆 − Γ𝐿

)
= 43.51(5)◦. (4)

3. Lattice Calculation of Δ𝑀𝐾

The Glashow–Iliopoulos–Maiani(GIM) mechanism indicates the dominant contribution to
Δ𝑀𝐾 arises from energy scales around or below the charm quark mass. By selecting an energy
scale 𝜇 larger than the charm quark mass, one can effectively separate the long-distance and short-
distance contributions to Δ𝑀𝐾 . The long-distance contribution is calculated using lattice QCD and
involves the bi-local product of two Δ𝑆 = 1 effective Hamiltonian operators, between which the
active charm quark can propagate. There is also a short-distance contribution to this long-distance
part that is incorporated through Wilson coefficients, which are determined by integrating out the
weak interaction and QCD effects at a sufficiently high energy scale. Consequently, Δ𝑀𝐾 can be
expressed as:

Δ𝑀𝐾 = 2P
∑︁
𝑛

⟨�̄�0 |𝐻Δ𝑆=1
𝑊

|𝑛⟩⟨𝑛|𝐻Δ𝑆=1
𝑊

|𝐾0⟩
𝑀𝐾 − 𝐸𝑛

, (5)

where 𝐻Δ𝑆=1
𝑊

denotes the Δ𝑆 = 1 effective Hamiltonian operator, defined as:

𝐻Δ𝑆=1
𝑊 =

𝐺𝐹√
2

∑︁
𝑞,𝑞′=𝑢,𝑐

𝑉∗
𝑞′𝑠𝑉𝑞𝑑

(
𝐶1𝑄

𝑞′�̄�
1 + 𝐶1𝑄

𝑞′�̄�
2

)
, (6)

where 𝑄𝑞𝑞
′

1 and 𝑄𝑞𝑞
′

2 are current-current operators, defined as:

𝑄
𝑞′𝑞
1 = (𝑠𝑎𝑞′𝑏)𝑉−𝐴(𝑞𝑏𝑑𝑎)𝑉−𝐴, 𝑄

𝑞′𝑞
2 = (𝑠𝑎𝑞′𝑎)𝑉−𝐴(𝑞𝑏𝑑𝑏)𝑉−𝐴, (7)

where 𝑉 − 𝐴 denotes a left-handed vertex and the Roman indices 𝑎 and 𝑏 label color components.
A more detailed setup has been discussed in [6, 7].

One can extract Δ𝑀𝐾 through a single integration of the four-point correlation functions
computed using lattice QCD over the time 𝑡2, as illustrated in Fig. 1:

A𝑆 (𝑇, 𝑡1) =
1
2!

𝑡1+𝑇∑︁
𝑡2=𝑡1−𝑇

⟨0|𝑇{�̄�0(𝑡 𝑓 )𝐻𝑊 (𝑡2)𝐻𝑊 (𝑡1)𝐾0(𝑡𝑖)}|0⟩

= 𝑁2
𝐾𝑒

−𝑀𝐾 (𝑡 𝑓 −𝑡𝑖 )

{∑︁
𝑛

⟨�̄�0 |𝐻𝑊 |𝑛⟩⟨𝑛|𝐻𝑊 |𝐾0⟩
𝑀𝐾 − 𝐸𝑛

(
−1 + 𝑒 (𝑀𝐾−𝐸𝑛 ) (𝑇+ 1

2 )
)}
,

(8)
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where the red-highlighted term represents our target. A further average over the time 𝑡1 will improve
the statistics.

Figure 1: Example of bi-local structure calculated on lattice

4. Lattice Calculation of 𝜀𝐾

Since 𝜀𝐾 is a CP-violating parameter, the contribution from the top quark is no longer sup-
pressed, and the GIM mechanism ceases to be relevant. Consequently, the short-distance contri-
bution becomes dominant. In this case, 𝑀00̄ can be expressed as the 𝐾0 − �̄�0 matrix element of a
local Δ𝑆 = 2 effective Hamiltonian operator, 𝐻Δ𝑆=2

𝑊
.

For convenience in implementing our lattice calculation, we adopt a charm-quark subtraction
scheme, where the unitarity condition is used to eliminate the factor 𝜆𝑐, rather than an up-quark
subtraction scheme, which eliminates 𝜆𝑢, where 𝜆𝑞 = 𝑉∗

𝑞𝑑
𝑉𝑞𝑠 for 𝑞 = 𝑢, 𝑐 or 𝑡. This choice reduces

the number of amplitudes that need to be computed using lattice QCD. The modified effective
Hamiltonian can be written as follows:

𝐻Δ𝑆=2
𝑊 =

𝐺2
𝐹

16𝜋2𝑀
2
𝑊

[
𝜆2
𝑢𝜂

′
1𝑆

′
0(𝑥𝑐) + 𝜆

2
𝑡 𝜂

′
2𝑆

′
0(𝑥𝑡 ) + 2𝜆𝑢𝜆𝑡𝜂′3𝑆

′
0(𝑥𝑡 , 𝑥𝑐)

]
𝑂𝐿𝐿 + h.c., (9)

where

𝑂𝐿𝐿 = 𝑠𝛾𝜇 (1 − 𝛾5)𝑑𝑠𝛾𝜇 (1 − 𝛾5)𝑑. (10)

In Eq. 9, the 𝜆2
𝑢 term is purely real and constitutes the primary contribution to Δ𝑀𝐾 . The 𝜆2

𝑡 term
can be computed perturbatively due to the heavy mass of the top quark. The 𝜆𝑢𝜆𝑡 term is the only
component that requires a long-distance calculation using lattice QCD. Hence, starting from the
Δ𝑆 = 1 Hamiltonian 𝐻Δ𝑆=1

𝑊
, an explicit effective Hamiltonian can be derived, which is distinctly

separated into 𝜆𝑢𝜆𝑡 terms and other contributions, facilitating our lattice calculation [9].

𝐻Δ𝑆=1
𝑊 =

𝐺𝐹√
2

( ∑︁
𝑞,𝑞′=𝑢,𝑐

𝑉∗
𝑞′𝑠𝑉𝑞𝑑

∑︁
𝑖=1,2

𝐶𝑖𝑄
𝑞′�̄�
𝑖

− 𝜆𝑡
6∑︁
𝑖=3

𝐶𝑖𝑄𝑖

)
(11)

where 𝑄𝑞𝑞
′

1 and 𝑄𝑞𝑞
′

2 are current-current operators and 𝑄𝑖 , 3 ≤ 𝑖 ≤ 6 are QCD penguin operators:

𝑄
𝑞′𝑞
1 = (𝑠𝑎𝑞′𝑏)𝑉−𝐴(𝑞𝑏𝑑𝑎)𝑉−𝐴, 𝑄

𝑞′𝑞
2 = (𝑠𝑎𝑞′𝑎)𝑉−𝐴(𝑞𝑏𝑑𝑏)𝑉−𝐴,

𝑄3 =(𝑠𝑎𝑑𝑎)𝑉−𝐴
∑︁

𝑞=𝑢,𝑑,𝑠,𝑐

(𝑞𝑏𝑞𝑏)𝑉−𝐴, 𝑄4 =(𝑠𝑎𝑑𝑏)𝑉−𝐴
∑︁

𝑞=𝑢,𝑑,𝑠,𝑐

(𝑞𝑏𝑞𝑎)𝑉−𝐴,

𝑄5 =(𝑠𝑎𝑑𝑎)𝑉−𝐴
∑︁

𝑞=𝑢,𝑑,𝑠,𝑐

(𝑞𝑏𝑞𝑏)𝑉+𝐴, 𝑄6 =(𝑠𝑎𝑑𝑏)𝑉−𝐴
∑︁

𝑞=𝑢,𝑑,𝑠,𝑐

(𝑞𝑏𝑞𝑎)𝑉+𝐴.

(12)
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The current-current operators involve all combinations of up and charm quarks, 𝑞′𝑞. The QCD
penguin operators, on the other hand, are summed over all four quark flavors. Here,𝑉 − 𝐴 denotes a
left-handed vertex, while 𝑉 + 𝐴 denotes a right-handed vertex and the Roman indices 𝑎 and 𝑏 label
color components.

The𝜆𝑢𝜆𝑡 terms receive contributions from two types of bi-local structures. The first comes from
cases where both operators are current-current operators, while the second arises from combinations
of a current-current operator and a QCD penguin operator. The resulting explicit effective operator
can be expressed as follows:

𝐻Δ𝑆=2
eff,𝑢𝑡 =

𝐺2
𝐹

2
𝜆𝑢𝜆𝑡

∑︁
𝑖=1,2


6∑︁
𝑗=1
𝐶𝑖𝐶 𝑗

∑︁
𝑥,𝑦

[ [
𝑄𝑖𝑄 𝑗 (𝑥, 𝑦)

] ]
+ 𝐶7𝑖

∑︁
𝑥

𝑂𝐿𝐿 (𝑥)
 , (13)[ [

𝑄𝑖𝑄 𝑗 (𝑥, 𝑦)
] ]

=
1
2
𝑇{𝑄𝑐�̄�𝑖 (𝑥) (𝑄𝑐�̄�𝑗 (𝑦) −𝑄𝑢�̄�𝑗 (𝑦)) + (𝑄𝑐�̄�𝑖 (𝑥) −𝑄𝑢�̄�𝑖 (𝑥))𝑄𝑐�̄�𝑗 (𝑦)

−𝑄𝑢�̄�𝑖 (𝑥)𝑄𝑐�̄�𝑗 (𝑦) −𝑄𝑐�̄�𝑖 (𝑥)𝑄𝑢�̄�𝑗 (𝑦)}, (𝑖, 𝑗 = 1, 2), (14)[ [
𝑄𝑖𝑄 𝑗 (𝑥, 𝑦)

] ]
=

1
2
𝑇

{[
𝑄𝑐�̄�𝑖 (𝑥) −𝑄𝑢�̄�𝑖 (𝑥)

]
𝑄 𝑗 (𝑦)

+𝑄 𝑗 (𝑥)
[
𝑄𝑐�̄�𝑖 (𝑦) −𝑄𝑢�̄�𝑖 (𝑦)

]}
, (𝑖 = 1, 2; 𝑗 = 3, ..., 6). (15)[ [

𝑄𝑖𝑄 𝑗 (𝑥, 𝑦)
] ]

describes the long-distance corrections, which we aim to determine through lattice
QCD calculations. A more detailed setup has been discussed in [4].

5. Short-Distance Divergence and Renormalization

The GIM mechanism and the𝑉−𝐴 structure effectively eliminate both quadratic and logarithmic
divergences in Δ𝑀𝐾 as can be seen from the one loop integral resulting from the charm and up
quark contractions without QCD corrections:∫

𝑑4𝑝𝛾𝜇 (1 − 𝛾5)
(
/𝑝 − 𝑚𝑐
𝑝2 + 𝑚2

𝑐

− /𝑝 − 𝑚𝑢
𝑝2 + 𝑚2

𝑢

)
𝛾𝜈 (1 − 𝛾5)

(
/𝑝 − 𝑚𝑐
𝑝2 + 𝑚2

𝑐

− /𝑝 − 𝑚𝑢
𝑝2 + 𝑚2

𝑢

)
=

∫
𝑑4𝑝𝛾𝜇 (1 − 𝛾5) /𝑝(𝑚2

𝑢 − 𝑚2
𝑐)

(𝑝2 + 𝑚2
𝑢) (𝑝2 + 𝑚2

𝑐)
𝛾𝜈 (1 − 𝛾5) /𝑝(𝑚2

𝑢 − 𝑚2
𝑐)

(𝑝2 + 𝑚2
𝑢) (𝑝2 + 𝑚2

𝑐)
. (16)

However, with reduced protection from the GIM mechanism and the inclusion of penguin operators,
the calculation of the product of the bi-local structure encounters a logarithmic divergence when
the two operators coincide:∫

𝑑4𝑝𝛾𝜇 (1 − 𝛾5)
(
/𝑝 − 𝑚𝑐
𝑝2 + 𝑚2

𝑐

− /𝑝 − 𝑚𝑢
𝑝2 + 𝑚2

𝑢

)
𝛾𝜈 (1 − 𝛾5)

(
/𝑝 − 𝑚𝑐
𝑝2 + 𝑚2

𝑐

)
=

∫
𝑑4𝑝𝛾𝜇 (1 − 𝛾5) /𝑝(𝑚2

𝑢 − 𝑚2
𝑐)

(𝑝2 + 𝑚2
𝑢) (𝑝2 + 𝑚2

𝑐)
𝛾𝜈 (1 − 𝛾5) /𝑝

𝑝2 + 𝑚2
𝑐

. (17)

This short-distance divergence can be removed by adding a counterterm, which is the product of a
coefficient and the local operator𝑂𝐿𝐿 . The explicit form of this counterterm has been defined in the
MS scheme [9]. In lattice calculations, the short-distance correction is typically implemented using
the regularization-independent (RI/SMOM) method [10–12]. At a given scale 𝜇𝑅𝐼 , the RI/SMOM

5
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renormalization condition requires that the product of the local operator 𝑂𝐿𝐿 and coefficients 𝑋Lat
𝑖 𝑗

cancels the bi-local operators in a Landau-gauge-fixed Green’s function with four external quark
lines, where the off-shell momenta (𝑝1, 𝑝2, 𝑝3, 𝑝4) are specified at the scale 𝜇𝑅𝐼 :(

Γ
bilocal,amp
𝛼𝛽𝛾𝛿,𝑖 𝑗

(𝑝1, 𝑝2, 𝑝3, 𝑝4) − 𝑋Lat
𝑖 𝑗 (𝜇RI)Γlocal,amp

𝛼𝛽𝛾𝛿
(𝑝1, 𝑝2, 𝑝3, 𝑝4)

)
𝑃𝛼𝛽𝛾𝛿 = 0. (18)

Γ
bilocal,amp
𝛼𝛽𝛾𝛿,𝑖 𝑗

and Γlocal,amp
𝛼𝛽𝛾𝛿,𝑖 𝑗

represent the amputated Green’s functions corresponding to the bi-local and
local operators, respectively. Since the Green’s function is constrained to vanish at specific momenta
under the RI/SMOM condition, it is necessary to restore its appropriate value by connecting the
regularization-independent scheme to the MS scheme. To achieve this, a coefficient𝑌MS

𝑖 𝑗
(𝜇MS, 𝜇RI)

is introduced to apply the required correction:∫
𝑑4𝑥 [[𝑄MS

𝑖 (𝑥)𝑄MS
𝑗 (0)]]MS =

∫
𝑑4𝑥 [[𝑄MS

𝑖 (𝑥)𝑄MS
𝑗 (0)]]RI + 𝑌MS

𝑖 𝑗 (𝜇MS, 𝜇RI)𝑂MS
𝐿𝐿. (19)

The final form of the matrix elements calculated on the lattice is expressed as follows:

HΔ𝑆=2
𝑊,𝑢𝑡 =

𝐺2
𝐹

2
𝜆𝑢𝜆𝑡

2∑︁
𝑖=1


6∑︁
𝑗=1
𝐶Lat
𝑖 𝐶Lat

𝑗

(∑︁
𝑥

[[𝑄Lat
𝑖 (𝑥)𝑄Lat

𝑗 (0)]]Lat − 𝑋Lat
𝑖 𝑗 (𝜇RI)𝑂Lat

𝐿𝐿 (0)
)

+ ©«𝐶MS
7𝑖 +

6∑︁
𝑗=1
𝐶MS
𝑖 𝐶MS

𝑗 𝑌MS
𝑖 𝑗 (𝜇MS, 𝜇RI)

ª®¬ 𝑍Lat→MS
𝐿𝐿 𝑂Lat

𝐿𝐿 (0)
 . (20)

The first line in Eq. 20 eliminates the divergence from the lattice calculation by applying the
RI/SMOM condition. The second line represents the counterterm defined in the MS scheme, along
with the matching term that connects the MS scheme to the RI/SMOM scheme.

However, due to the lack of precise perturbative results for the correction coefficient𝑌MS
𝑖 𝑗

(𝜇MS, 𝜇RI)
at a non-zero energy scale 𝜇RI, we rely on the NNLO result for 𝑌MS

𝑖 𝑗
(𝜇MS, 0) [3, 13]. In previous

work by our collaboration, a rough leading-order (LO) matching term Δ𝑌MS
𝑖 𝑗

(𝜇MS, 𝜇RI) at order 𝛼0
𝑠

was introduced to address this limitation:

Δ𝑌MS
𝑖 𝑗 (𝜇MS, 𝜇RI) = 𝑌MS

𝑖 𝑗 (𝜇MS, 𝜇RI) − 𝑌MS
𝑖 𝑗 (𝜇MS, 0). (21)

This incomplete calculation reduces the accuracy of the final results, highlighting the need for a
higher-order perturbative RI/SMOM to MS matching calculation.

6. Numerical Setup

We will perform our enhanced lattice calculations of Δ𝑀𝐾 and 𝜀𝐾 using two sets of config-
urations with physical quark masses, as summarized in Table 1. To complete this calculation, we
have a significant allocation on Frontier, the leadership class computer at the Oak Ridge National
Laboratory. Frontier has 9,408 AMD compute nodes in total. Each node contains one 64-core
AMD CPU (with 2 hardware threads per physical core) with access to 512 GB of DDR4 memory
and 4 AMD cards, each with 2 Graphics Compute Dies (GCDs) for a total of 8 GCDs(logically
equivalent to 8 separate GPUs). An additional powerful enhancement is our computing software

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
3
9

Enhanced Lattice QCD Studies on 𝜀𝐾 and Δ𝑀𝐾 Yi-Kai Huo

Name Action 𝑎−1(GeV) Volume 𝑚𝜋 (MeV) Size(fm)

64I MDWF+I 2.359(7) 643 × 128 × 12 139 5.4

96I MDWF+I 2.708 963 × 192 × 12 140 6.9

Table 1: Dynamical 2+1 flavor domain wall fermion lattices to be used in our calculation, MDWF = Mobius
domain wall fermions, I = Iwasaki gauge action.

architecture, Grid [8, 14, 15]. Grid is a high-performance C++ library designed to geometrically
decompose lattice calculations into MPI tasks while also leveraging SIMD lanes. The local vector
loops are parallelized using OpenMP pragmas. Grid supports heterogeneous computing architec-
tures, enabling it to maximize the computational potential of GPUs for matrix operations. With this
state-of-the-art hardware and advanced software infrastructure, we can achieve exceptional compu-
tational capabilities to carry out our lattice calculations efficiently and effectively. To enhance the
efficiency of propagator solving, we have implemented the following strategies:

• Utilizing Eigenvectors of the Dirac Operator
We leverage the eigenvectors of the Dirac operator, generated via the Lanczos algorithm, to
accelerate the computation. These eigenvectors are used to construct a preconditioner. This
preconditioner significantly reduces the number of conjugate gradient iterations required for
propagator solving by lowering the condition number of the Dirac matrix, thus making the
overall solving process more efficient and stable. [16]

• Mixed-Precision Inversion
A mixed-precision approach is applied during the inversion process to balance performance
and accuracy. In each outer iteration, we first invert using the residual vectors as sources in
single precision, which allows for faster computations and provides a reasonably good initial
estimate. Then we perform a double-precision correction step to ensure the desired accuracy
of the final solution. This method significantly reduces computation time while maintaining
high precision in the results.

• Incorporating BLAS in the Lanczos Preconditioner
To further optimize massive inner-product operations in the Lanczos preconditioner, we
exploited the Grid support for BLAS (Basic Linear Algebra Subprograms), specifically
the batched version of GEMM (matrix-matrix multiplication). By utilizing GemmBatch,
the batched operation efficiently processes multiple independent dot products in parallel,
leveraging GPU resources to minimize idle time and maximize computational throughput.
Consequently, we significantly accelerate the process of projecting a vector onto eigenvectors,
especially when handling a large number of eigenvectors. [17]

7. Conclusion

In combination with the previous calculations, as outlined in Table 1, we can compute Δ𝑀𝐾

and long-distance contribution to 𝜀𝐾 using data from two distinct lattice spacings. This will enable

7
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us to perform an extrapolation to the continuum limit, ensuring more accurate and reliable results
in the near future. What’s more, we are hoping to exploit a new RBC/UKQCD ensemble whose
generation was begun very recently. This ensemble has a lattice volume of 1283 × 288 and an
inverse lattice spacing of 3.5 GeV. When available, this ensemble will allow even greater precision
for calculations such as those described here in which a propagating charm quark plays an important
role.
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