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We present our calculation of the isospin-violating part of the hadronic vacuum polarisation (HVP)
contribution to muon (𝑔 − 2) in lattice QCD at the 𝑆𝑈 (3)f symmetric point. The computation of
the contributing fully connected diagrams with one internal photon as well as the computation of
the only (mass) counterterm are shown. The latter is determined from the charged-neutral kaon
mass splitting. We employ coordinate-space methods and a photon propagator which is regulated
à la Pauli-Villars with a cutoff scale Λ well below the lattice cutoff. This regularization makes it
possible for us to do crosschecks of individual contributions with calculations in the continuum.
Our continuum extrapolated results show little to no dependence on Λ. This makes our final limit
Λ → ∞ straightforward.
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1. Introduction

With the recent muon (𝑔 − 2) measurement at Fermilab [1, 2] the global experimental average
reached a 5.2 𝜎 discrepancy with the 2020 estimate of the Theory Initiative [3]. Additionally, the
uncertainty of the Standard-Model value now exceeds the one put forth by the experimental effort.
While the main contribution to the value of the former is due to QED effects, the main contribution
to the uncertainty is due to hadronic effects. The value and uncertainty of these hadronic effects
themselves are dominated by the hadronic vacuum polarisation (HVP), which enters at 𝑂 (𝛼2).
One way of calculating the HVP from first principles is using Lattice QCD (LQCD). While LQCD
simulations usually do not include different masses and QED effects for the light quarks, one has to
account for these differences to reach sub-percent precision. We will focus here on the QED effects
which enter at 𝑂 (𝛼3) and can be accounted for by considering the next-to-leading order expansion
of the QCD vector-vector correlator. These calculations bear resemblance to the hadronic light-by-
light contribution (HLbL), which is the secound largest contribution to the hadronic effects of the
muon (𝑔 − 2). However, while the HLbL contribution is UV-finite, the additional photon leads to
divergences in the HVP calculation. To address this issue, we will use the (double) Pauli-Villars
(PV) regularisation for the photon propagator, which was proposed in Ref. [4]. For the calculation
of the HVP on the lattice, we will use the covariant coordinate-space method [5].
In this work, we will present our calculation of the isospin-violating part of the HVP at the 𝑆𝑈 (3)
flavour symmetric point. For that, we will first give an overview over our formalism in section 2.
While there are many diagrams which contribute at 𝑂 (𝛼3) to the HVP, we will mostly focus on
the fully connected diagrams. Their calculation and results are discussed in section 3. With the
additional scale introduced by the inclusion of QED effects, the addition of a (mass) counterterm
becomes necessary. Section 4 gives a brief overview over the contributions to this counterterm,
focusing on the charged-neutral kaon mass splitting, shortened to kaon mass splitting, which also
includes the PV-regulated photon propagator. Lastly, the HVP calculation and the counterterm are
combined and extrapolated to the continuum in section 5. The section concludes with a discussion
on the dependence of the continuum extrapolated values on the PV mass.

2. Covariant coordinate-space method

In order to calculate the isospin-violating part of the HVP, we employ the covariant coordinate-
space (CCS) method [5]. This method is a proven alternative [6] to the time-momentum represen-
tation (TMR), which is usually used to calculate this quantity on the lattice. In the CCS method the
HVP contribution to the muon (𝑔 − 2) is obtained from a space-time integral weighted by a kernel.
There is some freedom in choosing the kernel, which is one advantage of the CCS method. In this
work, we use the traceless (TL) version of the kernel from [6], which takes the form

𝐻𝑇𝐿𝜆𝜎 (𝑧) =
(
−𝛿𝜆𝜎 + 4

𝑧𝜆𝑧𝜎

𝑧2

)
H2( |𝑧 |). (1)

The exact form of the scalar weight function can be found in [5]. The integral we use to calculate
the NLO isospin-violating part is given by equation (2). To obtain this representation, the QCD path
integral was expanded in the electromagnetic coupling. From this we also get a photon propagator.
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It is important to note that the bare electromagnetic correction to HVP is not UV finite, in contrast
to the HLbL contribution. We therefore use a (doubly) Pauli-Villars regulated photon propagator
[4]. Its position space representation is given by equation (5) were 𝐾1(𝑥) is the modified Bessel
function of the second kind. The additional scale introduced by QED necessitates the introduction
of a counterterm which is also included in equation (2). The counterterm we employ here can be
seen in equation (4). The first factor comes form the determination of the light-quark mass splitting.
It consists of the physical charged-neutral kaon mass splitting Δ𝑚

𝑝ℎ𝑦𝑠

𝐾
= −3.934 MeV (from the

PDG [7]), the kaon mass splitting Δ𝑚𝑒𝑚
𝐾

calculated on the lattice using the PV-regulated photon
propagator and a mass insertion into the kaon propagator. This combination then gets multiplied by
the derivative of the leading order HVP contribution with respect to the light-quark mass difference:

𝑎HVP,NLO,38
𝜇 = −𝑒

2

2

∫
𝑧,𝑥,𝑦

𝐻𝑇𝐿𝜆𝜎 (𝑧)𝛿𝜇𝜈 [G(𝑥 − 𝑦)]Λ⟨ 𝑗3𝜆(𝑧) 𝑗
𝑒𝑚
𝜇 (𝑥) 𝑗𝑒𝑚𝜈 (𝑦) 𝑗8𝜎 (0)⟩ + 𝐶𝑇 (2)

𝑗3𝜇 =
1
2
(
�̄�𝛾𝜇𝑢 − 𝑑𝛾𝜇𝑑

)
, 𝑗8𝜇 =

1
6
(
�̄�𝛾𝜇𝑢 + 𝑑𝛾𝜇𝑑 − 2𝑠𝛾𝜇𝑠

)
, 𝑗𝑒𝑚𝜇 = 𝑗3𝜇 + 𝑗8𝜇 (3)

𝐶𝑇 = −
Δ𝑚𝑒𝑚

𝐾
− Δ𝑚

𝑝ℎ𝑦𝑠

𝐾

⟨𝐾+ |�̄�𝑢 − 𝑑𝑑 |𝐾+⟩
𝜕𝑎

HVP,38
𝜇

𝜕 (𝑚𝑢 − 𝑚𝑑)

����
𝑚𝑢+𝑚𝑑 , 𝑚𝑠 , 𝑔0

(4)

[G(𝑥)]Λ =
1

4𝜋2 |𝑥 |2
−
Λ𝐾1

(
Λ

|𝑥 |√
2

)
2
√

2𝜋2 |𝑥 |
+ Λ𝐾1 (Λ|𝑥 |)

4𝜋2 |𝑥 |
. (5)

3. Calculating the connected contribution

The ensembles used in these proceedings were generated as part of the CLS (Coordinated
Lattice Simulations) initiative. They were obtained using 𝑁 𝑓 = 2 + 1 dynamical flavors of non-
perturbatively 𝑂 (𝑎) improved Wilson-Clover quarks and the tree-level 𝑂 (𝑎2) improved Lüscher-
Weisz gauge action. The properties of these ensembles are listed in table 1. All of them are at the
𝑆𝑈 (3) flavour symmetric point and have a pion and kaon mass of around 416 MeV. Two of the
ensembles have the same lattice spacing, but different volumes in order to get a better handle on
finite-size effects. Lastly, one of the ensembles, B450, has periodic boundary conditions in time
while the other ones have open boundary conditions in time.
At the 𝑆𝑈 (3)f symmetric point, there are three Feynman diagrams which contribute to the QCD

Id 𝛽 ( 𝐿
𝑎
)3 × 𝑇

𝑎
a [fm] 𝑚𝜋 [MeV] 𝑚𝜋𝐿 L[fm] �̂�𝑉

H101 3.4 323 × 96 0.08636 416(4) 5.8 2.8 0.71562
B450 3.46 323 × 64 0.07634 415(4) 5.1 2.4 0.72647
H200 3.55 323 × 96 0.06426 416(5) 4.3 2.1 0.74028
N202 483 × 128 412(5) 6.4 3.1
N300 3.7 483 × 128 0.04981 419(4) 5.1 2.4 0.75909

Table 1: Parameters of the used CLS ensembles. The lattice spacing in physical units was extracted from
[8]. The pion mass values were taken from [9]. We used [10] to extract �̂�𝑉 for each value of 𝛽. The B450
ensemble has periodic boundary conditions in time, while all other ensembles have open boundary conditions
in time.
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Figure 1: Diagrams that contribute to ⟨ 𝑗3
𝜆
(𝑧) 𝑗𝑒𝑚𝜇 (𝑥) 𝑗𝑒𝑚𝜈 (𝑦) 𝑗8𝜎 (0)⟩ at the 𝑆𝑈 (3)f symmetric point.

four-point function ⟨ 𝑗3
𝜆
(𝑧) 𝑗𝑒𝑚𝜇 (𝑥) 𝑗𝑒𝑚𝜈 (𝑦) 𝑗8𝜎 (0)⟩. These diagrams can be seen in figure 1. In the

following, we will discuss the calculation of the fully connected diagrams. The result of the (2+2)a
disconnected diagram will be added later on in section 5, already in the continuum.
The fully connected diagram on the left will be referred to as the self-energy diagram, while the one
on the right will be called the 2-loop diagram. The corresponding expectation values over gauge
configurations, ⟨...⟩𝑈 , with only local vector currents written in terms of propagators for each of
these diagrams are given in equations (6) and (7), respectively.

𝐶𝑆𝐸 (𝑥, 𝑦, 𝑧) = −2 Re⟨Tr[𝑆(0, 𝑥)𝛾𝜈𝑆(𝑥, 𝑦)𝛾𝜇𝑆(𝑦, 𝑧)𝛾𝜆𝑆(𝑧, 0)𝛾𝜎]⟩𝑈 (6)

𝐶2𝐿 (𝑥, 𝑦, 𝑧) = −2 Re⟨Tr[𝑆(0, 𝑦)𝛾𝜇𝑆(𝑦, 𝑧)𝛾𝜆𝑆(𝑧, 𝑥)𝛾𝜈𝑆(𝑥, 0)𝛾𝜎]⟩𝑈 (7)

𝑎HVP,NLO,38
𝜇,𝑐𝑜𝑛𝑛. = −QZ 𝑒2

2

∫
𝑧,𝑥,𝑦

𝐻𝑇𝐿𝜆𝜎 (𝑧)𝛿𝜇𝜈 [G(𝑥 − 𝑦)]Λ(2𝐶𝑆𝐸 (𝑥, 𝑦, 𝑧) + 𝐶2𝐿 (𝑥, 𝑦, 𝑧)) (8)

The contribution from just these two connected diagrams is written in equation (8). The charge
factor Q is here equal to 1/36. The local vector currents need to be renormalized. For that we use
[10] to calculate the renomalization factor �̂�𝑉 for each value of the inverse coupling. Z summarises
the needed renormalization factors. Going forward we will use local (𝑙) as well as conserved (𝑐)
vector currents for one of the internal (𝑋) and one of the external (𝑍) vertices. One last important
thing to note about equation (8) is the factor of two in front of the self-energy part. This comes from
the fact that the photon line in figure 1 can be on the upper as well as the lower propagator, which
means there are in total two diagrams contributing to this part. In order to confirm the viability
of our methodology, we first present results from ensembles without the strong interaction, i.e.
where the link variables𝑈 are set to unity. The continuum extrapolated result from such ensembles
can be crosschecked with continuum calculations because of our use of the PV-regularization.
Our extrapolated results for the four different discretisations can be seen in table 2a. A detailed
description of the continuum calculation can be found in [4]. The continuum result is−7.50×10−11.
The values shown in the table are very close to the continuum results for all discretisations, except
for the one with no conserved vector currents, due to its difficult extrapolation. Since the continuum
extrapolation of the XcZl and XcZc discretisations were especially flat with regards to the lattice
spacing, we choose these two for our calculations on the CLS ensembles.
The continuum extrapolation for the CLS ensembles can be seen in figure 2. The used fit function
includes a volume term to correct for finite-size effects,

𝑓 𝑓 𝑖𝑡 (a, 𝑚𝜋𝐿) = 𝑏 + 𝑐 a2 + 𝑑 𝑒−
𝑚𝜋𝐿

2 . (9)

The plots show the direct lattice data as round points as well as the same data but with the volume
term corrected as crosses. It can be seen that for the two parts separately the volume correction is
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XlZl XcZl XlZc XcZc
Total −6.90 −7.36 −7.44 −7.56

2-Loop 28.62 28.32 28.42 28.18
Self-Energy −17.76 −17.84 −17.93 −17.87

(a) Gluonless at Λ = 3𝑚𝜇 .

XcZl XcZc
Total −0.25(33) −0.24(31)

2-Loop 0.99(13) 0.86(13)
Self-Energy −0.63(19) −0.55(18)

(b) With gluons at Λ = 16𝑚𝜇 .

Table 2: Results of the continuum extrapolation for (a) the gluonless ensembles and (b) the CLS ensembles
for different discretisations.

0.000 0.002 0.004 0.006 0.008
a2 in fm2

−1.0

−0.5

0.0

0.5

1.0

1.5
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3.0

10
11
×

aH
V
P
,N
L
O

µ

SE, Not Volume corrected

SE, Volume corrected

2-Loop, Not Volume corrected

2-Loop, Volume corrected

(a) Self-energy and 2-Loop

0.000 0.002 0.004 0.006 0.008
a2 in fm2

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

10
11
×

aH
V
P
,N
L
O

µ

SE, Not Volume corrected

SE, Volume corrected

(b) Total=2×SE+2Loop

Figure 2: Continuum extrapolation of the self-energy and 2-loop parts on the left side as well as the total
value on the right side for the QCD ensembles. The Pauli-Villars mass is set to Λ = 16𝑚𝜇. Equation (9) is
used as an ansatz for the fit. The dots are the data from the lattices, while the crosses are the same data, but
with the volume term of the fit function subtracted without adjusting the error bars. The straight lines are the
fits to these volume-corrected points. The black dots are the results of the continuum extrapolation.

important, but when added together it is not statistically significant.
The black dots show the results of the continuum extrapolation, with the numerical value written in
table 2b. It is clearly visible that the self-energy part and the 2-loop part are non-zero, even within
error, but in the sum there is a huge cancellation, which results in the total contribution being equal
to zero within error.

4. Calculating the counterterm

In this section, we discuss the calculation of the counterterm, focusing on the determination
of the kaon mass splitting. At the 𝑆𝑈 (3)f symmetric point there are only two diagrams, which
contribute to the bare electromagnetic kaon mass splitting [11], see figure 3. One interesting
observation is that for large distances between the kaon creation and annihilation operators, these
diagrams are completely dominated by the elastic contribution, which can be calculated analytically.
This leads us naturally to the following methodology. We first calculate the diagrams for different
separation times (figure 4a). Then we restrict the results to the short distance part. We extrapolate
this restricted data to infinite separation times (figure 4b) and at the end we add back in the long
distance part which we calculated analytically with only the elastic contribution in infinite volume.

The continuum extrapolation of nine different PV-mass values is shown in figure 5a. In order
to check the plausibility of these values, we can examine the large PV-mass behavior. Using an

5
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(a) K1 diagram (b) K2 diagram

Figure 3: The Feynman diagrams of the leading order contributions to the electromagnetic mass splitting of
the kaon. At the 𝑆𝑈 (3)f symmetric point only these two diagrams contribute to the mass splitting [11].

Operator Product Expansion (OPE), similar to the one used in [4] we get the following prediction
for Λ → ∞:

Δ𝑚𝑒𝑚𝐾 (Λ) ≈ 3𝛼
2𝜋

log
(
Λ

𝜇𝐼𝑅

)
(𝑄2

𝑢 −𝑄2
𝑑)𝑚𝑙

𝜕𝑚𝐾

𝜕𝑚𝑙
= C log

(
Λ

𝜇𝐼𝑅

)
. (10)

On the right hand side, all constant factors were summarized in C which is approximately 0.12
MeV. The extrapolated mass splitting values together with a fit to these values can be seen in figure
5b. The fit function is based on the OPE prediction and given by

𝑓 𝑓 𝑖𝑡 (Λ) = 𝑎
Λ

Λ + 𝑑 + C log(Λ + 𝑏
𝑏

). (11)

It was slightly modified in order to make the function vanish for Λ → 0, which is the behavior we
expect, since the photon propagator vanishes in this limit. But most importantly the constant factor
in front of the logarithm is the same as in equation (10). For the fit we took a correlation of 0.9
between the input parameters, based on calculations for each ensemble. The resulting 𝜒2/𝐷𝑂𝐹 of
the fit is 0.77. This indicates the plausibility of the obtained values of the kaon mass splitting.
We obtain the second part of the counterterm, the mass insertion into the kaon propagator, using
the plateau method. For that we first calculate the matrix element ⟨𝐾+ |�̄�𝑢 − 𝑑𝑑 |𝐾+⟩ on the CLS
ensembles for a separation time between the creation and annihilation of the kaon which is as large
as possible. Then we look on the dependence of the matrix element on the insertion time of the
mass operator. Lastly, we do a fit to the resulting values with a constant function to get our result.
The last part which has to be calculated for the counterterm is the light-quark mass difference
derivative of the HVP. Here, we use the mass derivatives from the calculation in reference [9]
obtained in the TMR representation. In order to increase statistics, stochastic wall sources were
used for the calculation of this derivative.

5. Extrapolation of the total contribution

We can now combine the results of the previous sections in order to calculate the total con-
tribution using equation (2). First, we perform a continuum extrapolation excluding the (2+2)a
disconnected diagram. It was calculated separately without a PV regulator and has a continuum
value of−0.491(82)×10−11. Its charge factor is 1/12. Then we combine the continuum-extrapolated
value with the disconnected contribution and look at the dependence on the PV-mass Λ.

6
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(a) Data restricted to 𝑦𝑡 < 1 fm.
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0.35

∫
f(
y t

)
d

y t
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(b) Extrapolation of restricted data.

Figure 4: The methodology discussed in section 4 for extracting the short distance contribution of the kaon
mass splitting. The calculations shown here were done on the H101 ensemble.
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(a) Continuum extrapolation.
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(b) PV-mass behavior.

Figure 5: Continuum extrapolation of the kaon mass splitting and PV-mass dependence of the resulting
continuum values together with a fit using the fit function in equation 11. The H200 ensemble was excluded
from the extrapolation since it showed large volume effects.

The continuum extrapolation for a PV-mass of 16𝑚𝜇 can be seen in figure 6a. The fit function from
equation (9) is used, which is the same as the one used in section 3. The results of the continuum
extrapolations combined with the disconnected contribution for the different PV-masses are noted
in table 3. These values are plotted in dependence of the inverse square of Λ in figure 6b. It can be
seen that all the points are equal to one another within error. This means our results have basically
no dependence on the PV-mass.
One interesting observation is that the values as well as the errors are completely dominated by the
counterterm. Taking the N202 ensemble at a PV-mass of 16𝑚𝜇 as an example, the connected contri-
bution has a value of −0.148(191) ×10−11 while the value of the counterterm is 9.54(1.24) ×10−11.
It is expected that this will change when going away from the 𝑆𝑈 (3)f symmetric point towards the
physical one.

6. Conclusion

We have successfully calculated the leading order isospin-violating part of the HVP contri-
bution to muon (𝑔 − 2) at the 𝑆𝑈 (3)f symmetric point using a PV regulated photon propagator.
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(a) Continuum extrapolation for Λ = 16𝑚𝜇 .
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(b) PV-mass extrapolation

Figure 6: Continuum and PV-mass extrapolation of 𝑎HVP,NLO,38
𝜇 . Figure (a) is analogous to the plots of

figure 2 with the same fit function given by equation 9 of section 3.

Λ in 𝑚𝜇 3 5 10 16
1/Λ2 in 1/𝑚2

𝜇 0.11 0.04 0.01 0.004
1011 × 𝑎HVP,NLO,38

𝜇 (Λ) 6.63 ± 2.04 6.90 ± 2.13 7.26 ± 2.32 7.43 ± 2.47

Table 3: Continuum extrapolated values of the total contribution for the different PV-mass values.

Because of this regularisation we were able to crosscheck our methodology for calculating the
connected contribution with continuum calculations by using gluonless ensembles. On the CLS
ensembles we got comparatively small results for the connected contribution e.g. −0.25(33)×10−11

for a PV-mass of 16𝑚𝜇. During the calculation of the counterterm we saw the expected logarithmic
behavior of the electromagnetic kaon mass splitting for large PV-masses. After doing the combined
continuum extrapolation our results show little to no dependence on the PV-mass. By averaging the
results with the largest two PV-masses and taking a conservative correlation coefficient estimate of
unity we get a final result of 7.3(2.1) × 10−11.
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