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We present our preliminary results for the Δ𝐼 = 1/2 matrix elements of 𝐾 → 𝜋𝜋 decay and 𝜀′,
the measure of direct 𝐶𝑃 violation in 𝐾 → 𝜋𝜋, computed on multiple ensembles with periodic
boundary conditions (PBC) at the inverse lattice spacings of 𝑎−1 ≈ 1.0 GeV and 1.4 GeV. The
finer lattice ensemble is newly introduced as an extension to the first PBC calculation [1], while the
calculation on the coarser ensemble is updated with the approximately doubled statistics. Our first
attempt to take the continuum limit is also discussed with acknowledging potential significance of
the 𝑂 (𝑎2) scaling violation on these coarse lattices.
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Δ𝐼 = 1/2 process of 𝐾 → 𝜋𝜋 decay on multiple ensembles with periodic boundary conditions

1. Introduction

Precise calculation of 𝐾 → 𝜋𝜋 decay amplitudes has been a long-standing challenge for lattice
QCD. The measure of direct 𝐶𝑃 violation, 𝜀′, obtained from this calculation is expected to play
a key role in testing the Standard Model (SM) and constraining the parameters of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements. It is also expected to provide useful information for
understanding the matter-antimatter imbalance in the present universe, while 𝐶𝑃 violation within
the SM appears insufficient to explain it.

The decays of kaons into two pions have two isospin processes, Δ𝐼 = 1/2 and Δ𝐼 = 3/2, and
determining both isospin decay amplitudes enables us to give a prediction of 𝜀′. The Δ𝐼 = 3/2
amplitude was computed with sufficient precision about a decade ago [2–4]. The calculation of
the Δ𝐼 = 1/2 amplitude, on the other hand, needs to be improved to enable the SM prediction of
𝜀′ to reach the experimental precision. Since our first ab-initio lattice calculation of the Δ𝐼 = 1/2
process [5], we have improved the calculation by introducing multiple two-pion operators and
performing a step scaling as well as almost four times increasing the statistics [6]. The introduction
of an iso-singlet scalar operator as an additional two-pion operator for the 𝐼 = 0 channel played a
crucial role in isolating the contamination from excited states.

The result for 𝜀′ given in Ref. [6] is our best result as of now and reads Re(𝜀′/𝜀) =

21.7(2.6) (6.2) (5.0) × 10−4, where the errors, from left to right, correspond to statistical er-
ror, systematic error in the isospin limit and an estimate of electromagnetic and isospin-violating
effects. Although the result is in agreement with the experiment, Re(𝜀′/𝜀) = 16.6(2.3) × 10−4,
we need to improve the theory prediction to reach the experimental precision to avoid missing a
potential opportunity to discover physics beyond the SM.

Besides the electromagnetic and isospin-violating effects [7, 8], there are a few sources of
significant systematic uncertainty that need to be addressed. A particular error source is the finite
lattice spacing effect as the simulation was carried out at a single and somewhat coarse lattice
spacing, 𝑎−1 ≈ 1.4 GeV. While we employed G-parity boundary conditions (GPBC) in space in
our first calculation of the Δ𝐼 = 1/2 process to realize the physical kinematics of 𝐾 → 𝜋𝜋 with
the ground two-pion state [5, 6], we have demonstrated the feasibility of the same calculation
with periodic boundary conditions (PBC), using an even coarser lattice, 𝑎−1 ≈ 1.0 GeV [1]. This
enables us to accelerate our calculation of 𝜀′ using finer ensembles of domain wall fermions that
were already generated with inverse lattice spacings up to 2.7 GeV.

In this work, we calculate the Δ𝐼 = 1/2 𝐾 → 𝜋𝜋 amplitude using the PBC ensemble with
the inverse lattice spacing 𝑎−1 ≈ 1.4 GeV and almost double the statistics on the coarser ensemble
of 𝑎−1 ≈ 1.0 GeV as the first step toward the continuum limit. These ensembles have the same
fermion and gauge actions as the ones used in the GPBC calculation [5, 6, 9] except for the boundary
conditions. The details of the ensemble parameters are found in Ref. [6] for the 1.4 GeV ensemble
and Ref. [1] for the 1.0 GeV ensemble.

2. Overview of computational details

We use 2+1-flavor Möbius domain wall fermions (DWF) and the Iwasaki+DSDR gauge action.
The measurements are performed on lattices with 243 × 64 sites and 𝑎−1 ≈ 1.0 GeV and 323 × 64
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Δ𝐼 = 1/2 process of 𝐾 → 𝜋𝜋 decay on multiple ensembles with periodic boundary conditions

sites with 𝑎−1 ≈ 1.4 GeV.
The methodology of the measurement and analysis is largely unchanged from the previous

work [1]. We employ the all-to-all (A2A) quark propagator method [10] with 2,000 low modes
for the light quark and purely stochastic noise for the strange quark. We also employ the all-mode
averaging (AMA) technique [12, 13] to reduce the computational cost. A prescription to implement
AMA with the A2A method is described in Ref. [14]. On the coarser lattice (243), the low modes
are computed using the zMöbius DWF action [15] with a smaller 5D extension, 𝐿𝑠 = 12, and the
sloppy quark propagators for both the light and strange quarks are computed with 400 CG iterations
resulting in the residual ∼ 5 × 10−6. The bias of such calculation is compensated by taking the
difference from the exact calculation with roughly 10 times fewer configurations. We employ the
MADWF algorithm [16] to calculate the exact quark propagators with the Möbius DWF action with
𝐿𝑠 = 24. On the finer lattice (323), the Möbius DWF action with 𝐿𝑠 = 12 is used for both sloppy
and exact calculations. Most of other details are the same as the 244 lattice, but we stop the sloppy
CG at 330 iterations on 323. The resulting residual is slightly larger than that on 243, though the
AMA correction is still sufficiently precise since we use, unlike the 243 case, the same Möbius
DWF action for both sloppy and exact calculations.

We perform the hydrogen-like wave function smearing with a radius ≈ 0.3 fm for the pion
and sigma interpolation operators and ≈ 0.4 fm for the kaon interpolating operator. The two-pion
operators are constructed by a product of pion interpolating operators with back-to-back spatial
momentum and with a certain time separation of ≈ 0.6 fm. We introduce 4 different back-to-back
momenta, (0, 0, 0), 2𝜋

𝐿
(0, 0, 1), 2𝜋

𝐿
(0, 1, 1) and 2𝜋

𝐿
(1, 1, 1) and project the operators to the 𝑆 wave

and 𝐼 = 0. In addition, we also include the sigma operator to well isolate the 𝐼 = 0 finite-volume
two-pion states around the 𝑓0(500) resonance [1, 6, 11].

We compute the two-point functions of these two-pion operators

𝐶
2pt
𝑎𝑏

(𝑡, 𝛿𝑡 ) = ⟨𝑂𝑎 (𝑡)𝑂𝑏 (0)†⟩ − ⟨𝑂𝑎 (𝑡 + 𝛿𝑡 )𝑂𝑏 (0)†⟩, (1)

where 𝑂𝑎 stands for the two-pion operator labeled by 𝑎 and the second term subtracts unphysical
contributions of constant terms such as the vacuum expectation values ⟨𝑂𝑎⟩⟨𝑂†

𝑏
⟩ and the effect of

a single pion wrapping around the time boundary.
To obtain the 𝐾 → 𝜋𝜋 matrix elements with an excited two-pion final state, we optimize the

two-pion operators using the variational method [17, 18]. We solve the Generalized Eigenvalue
Problem (GEVP) with a matrix of 𝜋𝜋 two-point functions given in Eq. (1)

𝐶2pt(𝑡, 𝛿𝑡 )𝑉𝑛 (𝑡, 𝑡0, 𝛿𝑡 ) = 𝜆𝑛 (𝑡, 𝑡0, 𝛿𝑡 )𝐶2pt(𝑡0, 𝛿𝑡 )𝑉𝑛 (𝑡, 𝑡0, 𝛿𝑡 ), (2)

where 𝜆𝑛 and 𝑉𝑛 are the (generalized) eigenvalue and eigenvector, respectively. Here a trivial
matrix multiplication between𝐶2pt(𝑡, 𝛿𝑡 ) and𝑉𝑛 (𝑡, 𝑡0, 𝛿𝑡 ) with respect to the suppressed 𝜋𝜋 operator
indices is understood. The basis of 𝜋𝜋 operators is determined by a re-basing technique described
in Ref. [14]. This is a minor update in the methodology from the previous work [1] but found to
offer ∼ 20% improvement in the statistical precision.

After optimizing the two-pion operator, we determine the finite-volume matrix elements

𝑀eff
𝑛,𝑖 (𝑡1, 𝑡2, 𝑡0,Δ, 𝛿𝑡 ) = 𝐶

3pt
𝑛,𝑖

(𝑡1, 𝑡2, 𝑡0,Δ, 𝛿𝑡 )𝑅𝐾 (𝑡1)𝑅𝜋𝜋𝑛 (𝑡2, 𝑡0,Δ, 𝛿𝑡 ), (3)
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Figure 1: Two-pion effective energies 𝐸eff
𝑛 (𝑡0 + Δ, 𝑡0, 𝛿𝑡 ) = − 1

Δ
ln𝜆𝑛 (𝑡0 + Δ, 𝑡0, 𝛿𝑡 ) for the four low-lying

states on the 323 lattice plotted in lattice units. The three low-lying states (𝑛 = 0, 1, 2) are obtained from the
GEVP with three re-based operators, while the result for 𝑛 = 3 is obtained from the GEVP with four re-based
operators. Here we choose Δ = 2 and 𝛿𝑡 = 10.

where

𝑅𝐾 (𝑡) =

√︄
e−𝑚eff

𝐾
(𝑡 )𝑡

𝐶𝐾 (𝑡) , (4)

𝑅𝜋𝜋𝑛 (𝑡, 𝑡0,Δ, 𝛿𝑡 ) =

√︄
𝜆𝑛 (𝑡0 + Δ, 𝑡0, 𝛿𝑡 )𝑡/Δ

𝑉𝑛 (𝑡0 + Δ, 𝑡0, 𝛿𝑡 )†𝐶2pt(𝑡, 𝛿𝑡 )𝑉𝑛 (𝑡0 + Δ, 𝑡0, 𝛿𝑡 )
, (5)

with the two-point functions 𝐶𝐾 (𝑡) and the corresponding effective mass 𝑚eff
𝐾
(𝑡) obtained from

𝐶𝐾 (𝑡) and 𝐶𝐾 (𝑡 + 1). The 𝐾 → 𝜋𝜋 three-point functions are defined by

𝐶
3pt
𝑛,𝑖

(𝑡1, 𝑡2, 𝑡0,Δ, 𝛿𝑡 ) =
〈
𝑂

(𝑡0+Δ,𝑡0, 𝛿𝑡 )
𝑛 (𝑡1 + 𝑡2)𝑄𝑖 (𝑡1)𝑂𝐾 (0)†

〉
, (6)

with the Δ𝑆 = 1 four-quark operators 𝑄𝑖 and the kaon interpolating operator 𝑂𝐾 . To subtract
the power divergence due to the mixing with the quark bilinear operator 𝑠𝛾5𝑑, we perform the
subtraction, 𝑄𝑖 → 𝑄𝑖 − 𝛼𝑖𝑠𝛾5𝑑, with 𝛼𝑖 determined by a condition ⟨𝑄𝑖 (𝑡1)𝑂𝐾 (0)⟩ = 0. The
two-pion operator is optimized for the 𝑛-th state, 𝑂 (𝑡0+Δ,𝑡0, 𝛿𝑡 )

𝑛 =
∑
𝑎 𝑉𝑛,𝑎 (𝑡0 + Δ, 𝑡0, 𝛿𝑡 )𝑂𝑎. At

sufficiently large values of 𝑡1 and 𝑡2, the effective matrix element of the 𝑛-th state in Eq. (3) should
plateau as long as the two-pion operator is well optimized by the GEVP procedure.

3. Preliminary results

Figure 1 shows an example of the effective energies for the four low-lying states on the 323

(𝑎−1 ≈ 1.4 GeV) lattice. The first excited state (𝑛 = 1) is extracted with 1% precision and has the
closest energy to the kaon mass, while the higher states up to ∼ 1 GeV are also resolved at 𝑡0 ≃ 5
where the plateau starts.

Figure 2 shows the effective matrix element of the unrenormalized four-quark operator 𝑄6
with the first-excited two-pion final state. We take a weighted average of 𝑀eff

1,6(𝑡1, 𝑡2, 𝑡0,Δ, 𝛿𝑡 ) in
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Figure 2: Unrenormalized effective matrix elements of 𝑄6 with the 𝑛 = 1 two-pion final state on the 323

lattice plotted in lattice units.

Eq. (3) over 𝑡1 using the covariance matrix in 𝑡1 ≥ 4, where no significant dependence on 𝑡1 is
observed. The result of various GEVP bases are plotted. ‘3 × 3 GEVP’ corresponds to the GEVP
constructed with operators that create pions at rest, pions with spatial momentum ± 2𝜋

𝐿
(0, 0, 1) and

the 𝜎 at rest. The ‘4 × 4 GEVP’ includes an additional 𝜋𝜋 operator with back-to-back momentum
± 2𝜋
𝐿
(0, 1, 1). The ‘5×5 GEVP’ further includes 𝜋𝜋 operator with pions with momenta ± 2𝜋

𝐿
(1, 1, 1)

as the fifth operator. ‘RGEVP1’ and ‘RGEVP2’ correspond to the 3× 3 GEVP with three operators
that are optimized for the three low-lying states beforehand by a re-basing prescription described
in Ref. [14] using the original five operators. While the re-basing depends on a few parameters,
we show results of two different re-basing parameters as ‘RGEVP1’ and ‘RGEVP2’. The result
of the ‘5 × 5 GEVP’ has larger errors than other GEVP results. This typically happens when not
all states considered in GEVP are well resolved [1, 14]. The results of ‘RGEVP1’ and ‘RGEVP2’
are roughly 20% better resolved than the ‘3 × 3 GEVP’ and the ‘4 × 4 GEVP’. This indicates that
pre-optimizing the two-pion operators with a few additional operators could offer better statistical
precision in matrix elements.

These matrix elements need to be multiplied by the Lellouch-Lüscher factor [19] to exponen-
tially suppress their finite volume effects. On the 243 and 323 lattices in this study, only the two
lowest energy states are in the elastic region where the Lellouch-Lüscher factor is strictly valid. By
multiplying the lattice matrix elements by this factor, we obtain the 𝐾 → 𝜋𝜋 matrix elements with
exponentially suppressed finite volume effects for each two-pion finite-volume energy. Without
tuning the lattice volume, the finite-volume energies of two pions do not coincide with the kaon
mass. To realize the physical kinematics of 𝐾 → 𝜋𝜋 we linearly interpolate the matrix elements to
the on-shell point with respect to two-pion energy. While this assumption may cause a systematic
error, we estimated it to be much smaller than the statistical error on the 243 lattice because the
energy of the first-excited two-pion state (𝑛 = 1) is only 6% larger than the kaon mass [1]. On
the 323 lattice, the 𝑛 = 1 two-pion energy is about 11% larger than the kaon mass and this could
enhance the systematic error, but we postpone the estimation of this effect until the full paper.

Figure 3 shows the interpolation of the unrenormalized matrix elements of𝑄6 and𝑄8 with the
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Figure 3: Interpolation of unrenormalized matrix elements of 𝑄6 (left) and 𝑄8 (right) multiplied by the
Lellouch-Lüscher factor to the on-shell point on the 323 lattice plotted in lattice units. The corresponding
GPBC results in Ref. [6] are also plotted.

Lelloush-Lüscher factor multiplied to the on-shell point. Although they are bare matrix elements,
we can compare the results with those from GPBC calculation [6] because the 323 lattice is generated
with the same lattice action and with the same bare coupling as the GPBC calculation. The only
difference is boundary conditions. Therefore we also plot the corresponding matrix elements from
the GPBC multiplied by its individual Lellouch-Lüscher factor. The PBC and GPBC results should
be consistent up to the remaining finite volume effect which is exponentially suppressed. While
most of the matrix elements are in good agreement with GPBC, some tension is observed for those
of 𝑄7 and 𝑄8, which are electroweak penguin operators with the left-right chirality.

We renormalize these matrix elements with the same procedure as in Ref. [1, 6]. We employ
the RI/SMOM schemes as an intermediate scheme, in which we nonperturbatively perform scale
evolution to 𝜇 = 4.0 GeV using the step-scaling procedure [20]. After the scale evolution, we
perturbatively convert the renormalization scheme to MS. The only difference in the detailed
procedure from the previous PBC work [1] is that the present work performs renormalization
after interpolating the matrix elements to the physical kinematics, although we renormalized the
matrix elements before the interpolation in the previous work. It is easy to show that the on-shell
renormalized matrix elements do not depend on the order of interpolation and renormalization as
long as the interpolation is done with two data points.

Combining the renormalized matrix elements 𝑀MS
𝑖

(𝜇) with the Wilson coefficients 𝑦MS
𝑖

(𝜇)
and 𝑧MS

𝑖
(𝜇) in three-flavor theory given in Ref. [21, 22], we calculate the Δ𝐼 = 1/2 𝐾 → 𝜋𝜋

amplitude 𝐴0,

𝐴0 =
𝐺𝐹√

2
𝑉∗
𝑢𝑠𝑉𝑢𝑑

∑︁
𝑖

[𝑧MS
𝑖 (𝜇) + 𝜏𝑦MS

𝑖 (𝜇)]𝑀MS
𝑖 (𝜇), (7)

where we define the Fermi constant 𝐺𝐹 , the CKM matrix elements 𝑉𝑞′𝑞 connecting up-type (𝑞′)
and down-type (𝑞) quarks and their ratio 𝜏 = −𝑉∗

𝑡𝑠𝑉𝑡𝑑/𝑉∗
𝑢𝑠𝑉𝑢𝑑 . We perform the same estimation

of the systematic errors as in Ref. [1]. In Figure 4 we show 𝐴0 versus 𝑎2 and its extrapolation
to the continuum limit 𝑎 → 0, assuming 𝑂 (𝑎2) scaling. The smaller error bars represent the
statistical error, while the larger ones correspond to the total error with systematic errors added
in quadrature. The total error on the continuum limit includes the systematic error due to the
𝑂 (𝑎2) scaling violation, which is estimated by taking the difference in the central value from the
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Figure 4: Continuum extrapolation of the real (left) and imaginary (right) parts of 𝐴0. The smaller and
larger error bars of lattice results represent the statistical and total errors, respectively. Since all systematic
errors are mutual for the two lattice spacings with an exception of the finite lattice spacing error, which should
be excluded from the error on the data points when doing the continuum extrapolation, the extrapolation
is performed with statistical the error only and then the systematic errors are added in quadrature to both
extrapolated and finite-lattice values. The experimental value of Re𝐴0 is also plotted.

continuum extrapolation with an assumption of 𝑂 (𝑎4) scaling, instead of the finite lattice spacing
error included in the finite-lattice values. Besides the discretization or scaling-violation error, the
error from perturbative truncation of Wilson coefficients is the most significant (12%).

Finally we calculate the continuum limit of the measure of direct 𝐶𝑃 violation relative to that
of indirect 𝐶𝑃 violation in the isospin limit,

𝜀′

𝜀
=

i𝜔ei(𝛿2−𝛿0 )
√

2𝜀

[
Im𝐴2
Re𝐴2

− Im𝐴0
Re𝐴0

]
, (8)

where we define the Δ𝐼 = 3/2 amplitude 𝐴2, the isospin-𝐼 𝜋𝜋 phase shifts 𝛿𝐼 , and 𝜔 = Re𝐴2/Re𝐴0.
We use the values of Re𝐴0 and Re𝐴2 from the experiments and Im𝐴2 from RBC/UKQCD’s earlier
work [4] with a small change due to the PDG update on the PDG value of 𝜏, following the procedure
in our previous works [1, 6]. Our preliminary result reads Re(𝜀′/𝜀) = 17.5(6.8) (4.9) (5.0), which is
in good agreement with the experiment Re(𝜀′/𝜀)exp = 16.6(2.3) and the previous GPBC calculation,
Re(𝜀′/𝜀)2020 = 21.7(2.6) (6.2) (5.0) × 10−4. The three errors in lattice calculations, from left to
right, correspond to the statistical and systematic errors in the isospin limit, and an estimate of the
electromagnetic/isospin-violating corrections.

4. Summary and outlook

In this work, we calculate the Δ𝐼 = 1/2 𝐾 → 𝜋𝜋 amplitude and 𝜀′, the measure of direct 𝐶𝑃
violation on two lattice ensembles of 𝑎−1 ≈ 1.0 GeV and 𝑎−1 ≈ 1.4 GeV with periodic boundary
conditions, as an extension of our earlier PBC calculation [1] where we calculated on the coarser
lattice of 𝑎−1 ≈ 1.0 GeV. We present, for the first time, the preliminary result for the continuum
extrapolation of the amplitude and 𝜀′. In Figure 5 we summarize the results for Re(𝜀′/𝜀) in our
earlier calculations (circles) and in this work (squares, preliminary) along with the world average
of experiments. The result in the present work is consistent with the experimental results and our
earlier lattice results, while the lattice calculation is still desired to be improved.
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Figure 5: History of RBC/UKQCD calculation of Re(𝜀′/𝜀) compared with the world average of experiments.
The smaller and larger error bars of lattice results represents the statistical and total errors, respectively.

This work represents an important first step towards reducing the finite lattice spacing error,
which is one of the most significant systematic errors estimated in our earlier works [1, 6], as it
calculates theΔ𝐼 = 1/2 amplitudes with multiple lattice spacings for the first time. While we present
the first continuum extrapolations of the amplitude and 𝜀′ with an estimation of the 𝑂 (𝑎2) scaling
violation error (11% for Im𝐴0), this error estimation is somewhat uncertain since we use only two
lattices with relatively large spacings. We plan to continue calculations on existing Möbuis DWF
lattice ensembles with PBC with larger inverse lattice spacings up to 2.7 GeV. The next generation
of 𝐾 → 𝜋𝜋 calculation with these finer lattices will significantly reduce the discretization error.

Another significant source of systematic error within the isospin limit is the perturbative
truncation of Wilson coefficients (∼ 12% for 𝐴0). This error cannot be reduced by step scaling
because Wilson coefficients need to be matched between three- and four-flavor theories below
the charm threshold, where NLO perturbation theory could be quite uncertain. This error could
be reduced in the near future either by an NNLO perturbative calculation or by nonperturbative
matching between three- and four-flavor theories [23].

Introduction of electromagnetic and isospin-violating corrections is also a very important
piece for achieving the experimental precision of 𝜀′. Theoretical studies are underway [7, 8] and
numerical calculation will be performed in the future.
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