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Non-unitary protocols are already at the base of many hybrid quantum computing applications,
especially in the noisy intermediate-scale quantum (NISQ) era where quantum errors typically
affect the unitary evolution. However, while the framework for Parameterized Quantum Circuits
is widely developed, especially for applications where the parameters are optimized towards a
set goal, we find there are still interesting opportunities in defining a unified framework also for
non-unitary protocols in the form of Parameterized Quantum Channels as a computing resource.
We first discuss the general parameterization strategies for controlling quantum channels and their
practical realizations. Then we describe a simple example of application in the context of error
mitigation, where the control parameters for the quantum channels are optimized in the presence
of noise, in order to maximize channel fidelity with respect to a given target channel.
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1. Introduction

Despite continuous progress, achieving quantum advantage in the NISQ era remains a daunting
task due to the limitations of protocols based on ideally noiseless unitary circuits. In general, real
quantum hardware introduces noise, turning ideal unitary operations into non-unitary quantum
channels. This makes it useful to rethink any ideal computation protocol with a realistic one,
where parametric unitary circuits 𝑈 are replaced by parametric quantum channels E to better
model realistic system behaviors, possibly including tasks involving thermal states and open system
dynamics.

In the next Section we discuss about some useful representations for parameterizing quantum
channels and introduce our parameter optimization protocol. Then, in Section 3 we show some
numerical results about the application of the protocol to a simple toy case of CNOT optimization
with asymmetric noise between the qubits, while we outline some future perspective in Section 4.

2. Parametric quantum channels: the framework

While quantum circuits, representing ideally unitary operations mapping input pure states into
output pure states, can be easily parameterized by the angles of rotation gates, the construction
of parametric quantum channels might involve also non-unitary processes such as measurements,
partial traces and the use of stochastic ensambles of other sub-channels or sub-circuits. The
only assumption we enforce on the protocols implementing a quantum channel is that it models a
completely positive and trace preserving (CPTP) linear map between density matrices [1]. Non-
trace-preserving channels can in principle be realized through post-selection by discarding the state
when some specific measurement occur, but this is beyond the scope of this proceeding, which
focuses instead on quantum channels where output states are linearly related to input states1. In the
following section we briefly describe some useful formal representations and, more importantly,
practical realizations of parametric quantum channels. It is important to stress that, even in absence
of quantum noise from actual hardware, realizing quantum channels can be useful to gain more
control on hybrid quantum-classical approaches, so here we consider their non-unitarity a resource
for computation (common perspective, for example, in the context of reservoir computing [2] or
thermal state preparation [3]), not as a drawback which brings a loss in controllability.

2.1 Quantum channel representations

As mentioned above, even in the absence of noise from the hardware, one can still realize
CPTP linear maps by engineering the source of non-unitarity in different ways, some of which are
described in the next sections. However, this deviation from unitarity should not be considered as
a form of noise, since it is actually fully controllable by the specific protocol and parameterization
of the quantum channel. On the other hand, the noise coming from running on actual hardware
is not directly controllable and tends in general to distort the engineered channel. To distinguish
between these two situations, while we denote by E an ideal noiseless quantum channel, we use

1While the output of a quantum operation with post-selection can be always normalized back to unit trace, the
dependence of the on the input density matrix is effectively non-linear, so that it cannot be described with the formalism
of linear superoperators.
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Ẽ to indicate the actual noisy quantum channel realized by the hardware 2. In general, even two
circuit implementations which would ideally correspond to the same ideally unitary channel might
differ when executed on the hardware.

Kraus representation A common representation for a quantum channel E acting on states in a
Hilbert space H with dimension 𝑑 ≡ 2𝑞 is given by the Kraus decomposition [1, 4] in terms of a
set of operators {𝐾𝛼}𝑑

2−1
𝛼=0 :

𝜌′ = E(𝜌) =
∑︁
𝛼

𝐾𝛼𝜌𝐾
†
𝛼, (1)

where the trace-preserving property is satisfied if
∑

𝛼 𝐾
†
𝛼𝐾𝛼 = 1. In general, any unitarily trans-

formed set 𝐾 ′
𝛼 = 𝒰

𝛽
𝛼𝐾𝛽 , with 𝒰 ∈ 𝑆𝑈 (𝑑2), represents the same quantum channel, but it is possible

to select a single representative of the equivalence class by choosing a set that satisfies the canonical
orthogonality relation Tr

(
𝐾

†
𝛼𝐾𝛽

)
= 𝜆𝛼𝛿𝛼𝛽, where 𝜆𝛼 are non-negative and non-increasing [4, 5].

Stinespring representations While the Kraus representation can be useful for quantum informa-
tion purposes in performing formal computations, a more practical approach to quantum channel
engineering can be realized by performing unitary operations on an extension of the the origi-
nal Hilbert space via a tensor product with an auxiliary space A ⊗ H , with measurements only
on the space H . This realization corresponds to the Stinespring representation of the quantum
channel [1, 4], which is formally written as

𝜌′ = E(𝜌) = TrA
[
𝑈

(
( |𝜈0⟩⟨𝜈0 |)A ⊗ 𝜌

)
𝑈†

]
, (2)

where |𝜈0⟩ can be any state (usually |0⟩ is chosen), while𝑈 ∈ 𝑆𝑈 (2𝑞𝑠+𝑞𝑎 ), with 𝑞𝑠 and 𝑞𝑎 denoting
the system and ancilla qubits. The most general channel could then be realized using 𝑞𝑎 = 2𝑞𝑠
qubits, therefore requiring thrice the number of qubits with respect to the original ones. However,
since parameterizing a subset of quantum channels might be sufficient for one’s purposes, it is
useful to consider a smaller number of ancilla qubits 𝑞𝑎 ≪ 𝑞𝑠. In this representation, non-unitarity
comes from the entanglement possibly generated by 𝑈 between the two subsystems A and H ,
which produces an output mixed state when A is traced out. Regarding parameterization, it can be
realized as customary for unitary circuits in terms of angle parameters of rotation gates appearing
in𝑈. In terms of the Kraus representation,𝑈 and {𝐾𝛼} are related by

𝑈 |𝜈0⟩ ⊗ |𝜓⟩ =
𝑑2−1∑︁
𝛼=0

|𝛼⟩ ⊗ 𝐾𝛼 |𝜓⟩ ∀ |𝜓⟩ . (3)

Stochastic representations A class of quantum channels, named mixed-unitary channels [6],
can be realized as an average of the application of an ensemble of unitary circuits 𝑈 distributed
according to some probability weight 𝑤(𝑈) ≥ 0, namely

𝜌′ = E(𝜌) =

∫
SU(2𝑞 )

[𝑤(𝑈)𝑑𝑈] 𝑈𝜌𝑈† ≃ 1
𝑀

𝑀∑︁
𝑖=1

𝑈𝑖∼𝑤

𝑈𝑖𝜌𝑈
†
𝑖
, (4)

2Here we make the strong assumption that possible time-dependent variations in the noisy quantum channel are
negligible compared to deviations from the corresponding ideal noiseless channel.
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where the last term is an approximation of the mixed-unitary channel using a finite number of
𝑀 circuits {𝑈𝑖} identically and independently sampled with probability distribution 𝑤(𝑈). In
this setup, the parameterization of the quantum channel enters through the probability distribution
𝑤 𝜃 (𝑈), which can be chosen to have support only on a specific subset of SU(2𝑞), as we show in an
example of application in Section 3. In general, the mixed-unitary class of quantum channels does
not parameterize the whole space of CPTP maps. However, stochastic protocols are particularly
useful for their simplicity and can be combined with partial Stinespring realizations (i.e., with
𝑞𝑎 < 2𝑞𝑠, as defined above), which allow them to reach beyond the mixed-unitary class.

2.2 Parameter optimization

In the following discussion, we write any parameter either appearing as an angle in rotation gate
in the case of Stinespring realizations or as parameterizing the probability distribution of quantum
circuit ensambles in the stochastic realization, with a symbol 𝜃𝑖 , while Θ indicates the full set of
parameters.
To approximate a target unitary channel 𝑈 ∈ SU(2𝑞), we construct a parametric quantum channel
E (Θ) . The optimization objective minimizes the distance between the ideal (E𝑈) and realized (Ẽ (Θ) )
channels in the form of a cost function

𝐶 (Θ) = 𝑑 (E𝑈 , Ẽ (Θ) ), (5)

for some definition of distance between quantum channels. An useful metric for comparing two
quantum channels E1 and E2 is the diamond norm [7–11], expressed as

𝑑⋄ (E1, E2) = sup
𝑛≤𝑑,𝜂≥0

𝑑Tr
(
(I𝑛 ⊗ ΔE12) (𝜂), 0

)
, 𝑑Tr

(
𝜌1, 𝜌2

)
≡ 1

2
Tr |𝜌1 − 𝜌2 |, (6)

where 𝑑Tr is the trace distance between density matrices [1], while ΔE12 ≡ E1 − E2 and I𝑛 is a
trivial extension of the E𝑖 channels on an auxiliary space A𝑛 of dimension dimA𝑛 ≡ 𝑛 ≤ 𝑑 (this
space is not the same considered for the Stinespring dilation). For later convenience, we define the
𝑛-dependent partial diamond distance before the sup𝑛 as

𝑑 (𝑛) (E1, E2) = sup
𝜂≥0

𝑑Tr
(
(I𝑛 ⊗ E1) (𝜂), (I𝑛 ⊗ E2) (𝜂)

)
. (7)

The input density matrix 𝜂 (trace 1 understood), in common to both channels before computing
𝑑 (𝑛) (E1, E2), is a generally mixed state in the space A𝑛 ⊗ H , while the output density matrices
between the I𝑛 ⊗ E𝑖 channels are compared through the trace distance 𝑑Tr. As discussed in [8, 9],
considering general trivial extensions, instead of directly evaluating the sup over states on H , is
essential since the input state fed to a quantum channel E𝑖 might be in generic entanglement with the
environment. While increasing the dimension of the extension 𝑛 allows for more and more entangled
states, saturating to maximal entanglement when 𝑛 = 𝑑, the behavior of 𝑑 (𝑛) (E1, E2) of the trace
distance as a function of 𝑛 is not monotonic in general. Therefore, one should in principle compute
𝑑 (𝑛) for all 𝑛 ∈ [0, 𝑑], evaluating the occurrence of the maximum when the worst 𝑛 is realized.
Regarding the channel optimization, considering the cost function to be minimized in Eq. (5), for
each 𝑛 the task consists in finding the optimal Θ∗ which saturate minΘ max𝑛 𝑑 (𝑛) (E𝑈 , Ẽ (Θ) ). In
practice, by the double convexity of the distances, it derives [9] that for any 𝑛 the sup𝜂≥0 is saturated
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by 𝜂 being pure states (since these states are at the boundary of the density matrices, with mixed
states at the bulk), so they can be prepared for example by parameterizing a general unitary circuit
𝑉 (𝛼) and minmaxing the quantity

𝐶 (𝑛) (Θ;𝛼) ≡ 𝑑Tr
(
(I𝑛 ⊗ E𝑈) (𝜂𝛼), (I𝑛 ⊗ Ẽ (Θ) ) (𝜂𝛼)

)
, with 𝜂𝛼 ≡ 𝑉 (𝛼) |0⟩⟨0|𝑉†(𝛼). (8)

This optimization can go through a jointed (possibly approximate) gradient descent-ascent for Θ-𝛼
to obtain minΘ max𝛼 𝐶

(𝑛) (Θ;𝛼). Notice that evaluating the trace distance in Eq. (6) or Eq. (8)
on a real quantum hardware requires some form of process or state tomography and can be done
only with a finite number of shots. Therefore, an approximate approach such as classical shadows
estimate of mixed states properties would be preferable on larger systems [12].

3. A himple example of application: stochastic CNOT with asymmetric noise

Here we show a mixed-unitary channel realization and optimization where the target unitary
is a CNOT gate between qubit 0 and qubit 1 (i.e., 𝑈 ≡ 𝐶0𝑋1 =⇒ ECNOT(𝜌) ≡ (𝐶0𝑋1)𝜌(𝐶0𝑋1))
in the presence of asymmetric noise between the two qubits involved. The mixed-unitary channel
we consider is built as a weighted mixture from only two very simple implementations, shown in
Figure 1, of what would be the same ideally unitary target CNOT. In practice, the effect of noise on

E1
noise−−−→ Ẽ1 E2

noise−−−→ Ẽ2

H H

H H

Figure 1: Two possible, ideally equivalent, realizations of a CNOT unitary between qubit 0 (top) and qubit
1 (bottom).

single qubit gates is often negligible, so, in the presence of symmetric noise (i.e., if the two qubits
are affected by similar noise contributions), one does not observe but marginal advantages in using
one or the other variant. With asymmetric noise, the effective channels Ẽ1 and Ẽ2 differ, so one can
investigate which convex combination

Ẽ (𝑤1 ) = 𝑤1Ẽ1 + (1 − 𝑤1)Ẽ2 (9)

minimizes the cost in Eq. (5) as a function of the only channel parameter 𝑤1 ∈ [0, 1], according to
the stochastic channel representation introduced in Sec. 2.1. The platform we considered for the runs
is the Pennylane library with default.mixed emulator [13], where we added noise sources using
qml.DepolarizingChannel and qml.AmplitudeDamping on both qubits individually before and

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
1
6

Noise-Aware Quantum Computation via Parameterized Quantum Channels Giuseppe Clemente

after the two CNOTs in both versions3, where coefficients have been arbitrarily chosen according to
Table 1 (other asymmetric choices exhibit the similar phenomenology, but the gain from the mixed
strategy starts to disappear when getting closer to the symmetric case). The behavior of the cost

Noise Type Qubit 0 coefficient Qubit 1 coefficient

Depolarizing 0.01 0.03
Amplitude Damping 0.05 0.3

Table 1: Noise parameters for single-qubit noise channels chosen asymmetrically for the two qubits.
The coefficients values are related to the single parameters 𝑝 and 𝛾 appearing in the definition of
qml.DepolarizingChannel and qml.AmplitudeDamping respectively.

0.0 0.2 0.4 0.6 0.8 1.0

mixing weight (w1)

0.1

0.2

0.3

0.4

0.5

d
T

r

dTr(Ẽ (w1)(η), ECNOT (η))

supη dTr(Ẽ (w1)(η), ECNOT (η))

meanη dTr(Ẽ (w1)(η), ECNOT (η))

Figure 2: Cost function 𝐶 (0) (𝑤1;𝛼) as a function of 𝑤1. Thin magenta lines correspond to some different
initial input states. The behavior for the sup𝜂 and the mean𝜂 at any fixed value of the mixing parameter
𝑤1 is represented respectively by the thick green line and the blue dotted line, while the empty black dot
corresponds to the min-max solution, which is reached through minmaxing via gradient descent-ascent.

function 𝐶 (0) (𝑤1; 𝜂) is shown in Figure 2. This contains both the worst case for different values of
𝑤1 (thick green line), where we can find the optimal 𝑤1 as its minimum, as well as (thin magenta
lines) the general behavior of the mixed channel for a few (pure) input states 𝜂 = |𝜓0⟩⟨𝜓0 | where
|𝜓0⟩ = 𝑉 |0⟩ and 𝑉 is sampled randomly from SU(4) with the Haar measure. Even if not necessary
for the actual minmax optimization, this illustrates quite nicely that the single circuits at the border
of the mixing domain (i.e., 𝑤1 = 0 or 𝑤1 = 1) can behave better than for the “optimal” 𝑤∗

1 solution

3In this simple test we are ignoring other possible multi-qubit noise channels, which would likely contribute with
additional asymmetric sources.
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for at least some input states, but since this channel is supposed to take part of a generic stage of a
much larger circuit, one cannot really control which input is fed, making the minmax solution the
more robust and consistent one, even if not necessarily the best one for certain runs. The average
distance instead appears to exhibit a quite milder behavior, where the “minmean” solution for 𝑤1

seems also sufficiently close to the minmax one. Moreover, at least for this simple example, we
tested that for trivial extensions (𝑛 > 0) the costs 𝐶 (𝑛) are not higher than 𝐶 (0) , so the worst case
for 𝐶 = sup𝑛 𝐶 (𝑛) is already realized by 𝐶 (0) .

4. Conclusions and outlook

Parameterized quantum channels extend unitary computing to NISQ devices by adapting
to noise properties through parametric optimization. They generalize standard error mitigation
techniques and can be tailored for specific tasks where a quantum channel has to be reused multiple
times as component of a longer circuit. This includes, for example, real-time evolution with
Trotterization, where the same basic block of unitary circuit is repeated at many locations of the
full circuit. Future directions include also addressing trainability and scaling on real hardware,
investigating the effect of crosstalks between different qubits, as well as considering generalizations
of the parametric optimization in the case of non-linear quantum operations (e.g., via postselection).
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