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We compute the 𝜃-dependent mass spectrum of the 2-flavor Schwingr model using the tensor
network (DMRG) in the Hamiltonian formalism. The pion and the sigma meson are identified
as stable particles of the model for nonzero 𝜃 whereas the eta meson becomes unstable. The
meson masses are obtained from the one-point functions, using the meson operators defined by
diagonalizing the correlation matrix to deal with the operator mixing. We also compute the
dispersion relation directly by measuring the energy and momentum of the excited states, where
the mesons are distinguished by the isospin quantum number. We confirmed that the meson masses
computed by these methods agree with each other and are consistent with the calculation by the
bosonized model. Our methods are free from the sign problem and show a significant improvement
in accuracy compared to the conventional Monte Carlo methods. Furthermore, at the critical point
𝜃 = 𝜋, the mesons become almost massless, and the one-point functions reproduce the expected
CFT-like behavior. This talk is based on the paper [1].

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:itou(at)yukawa.kyoto-u.ac.jp
mailto:akira.matsumoto(at)yukawa.kyoto-u.ac.jp
mailto:yuya.tanizaki(at)yukawa.kyoto-u.ac.jp
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
1
0

Theta-dependent mass spectrum of the 2-flavor Schwinger model Akira Matsumoto

1. Introduction and summary

The lattice Monte Carlo simulation has played an essential role in uncovering various non-
perturbative phenomena of QCD. One of the important applications is predicting the hadron mass
spectrum, where experimental results can be reproduced only from a few input parameters [2]. On
the other hand, the sign problem has been a long-standing obstacle to studying systems with the
chemical potential, the topological term, etc. To circumvent this problem, numerical methods in the
Hamiltonian formalism, such as quantum computing and tensor networks, are recently developed
as complementary approaches. These new methods directly handle approximated wave functions
and do not rely on important sampling, which will enable us to access new information that is hard
to obtain by the conventional Monte Carlo method.

In ref. [3], we developed three distinct methods to compute the mass spectrum in the Hamilto-
nian formalism and demonstrated them by studying the 2-flavor Schwinger model at 𝜃 = 0. There
are three composite particles characterized by quantum numbers of the isospin 𝐽, parity 𝑃, and
𝐺-parity 𝐺, and they are called the pion 𝐽𝑃𝐺 = 1−+, sigma meson 0++, and eta meson 0−−. We
obtained the promising results of their mass spectrum at 𝜃 = 0, which motivates us to extend the
work to 𝜃 ≠ 0. However, the nonzero 𝜃 angle explicitly breaks 𝑃 and𝐺, so that the eta meson cannot
be distinguished from the other singlet states by these symmetries. Indeed, the eta meson becomes
unstable for 𝜃 ≠ 0 due to the 𝜎 − 𝜂 mixing and 𝜂 → 𝜋𝜋 decay. Furthermore, the analytic study on
the bosonized model [4] predicts that the gap of the system, namely the pion mass, decreases as 𝜃
approaches 𝜋, which will make our numerical method more costly. Thus, we need to improve the
methods and deal with these subtleties so that we can investigate the 𝜃-dependent mass spectrum
by the first-principles calculation. In ref. [1], we use two independent schemes; the improved
one-point-function and the dispersion-relation schemes.

calculation, we approximate the integral of Ssubtr
N (!!,m) by

the trapezoidal rule for the discrete set of !! points, but this
does not seem to be the reason for the large fluctuation in the
"/(2#)!0.5 region. The main nonperturbative contribution
comes from DetN and Ssubtr

N (!!,m) gives only perturbative
effects of order !!"2.
We suspect that this large fluctuation is an example of the

well-known phase problem. Simply increasing the statistics
might not improve the situation.
Of course in application to QCD, it will be important to

evaluate Ssubtr
N (!!,m) and other observables more precisely.

B. ! meson correlator and U„1… problem
As the final subject, we would like to present the result of

our exploratory measurement of the $ meson mass in order
to study the topological structure. The $ propagator consists
of two parts:

%$$&#"2 ! tr" '3
1
D '3

1
D # $ $4 ! tr" '3

1
D # tr" '3

1
D # $ ,

(36)

where the first term is the same as the flavor nonsinglet #
propagator and the second term gives the ‘‘hair-pin’’ or dis-
connected contribution to the flavor singlet operator. Because
the number of physical space-time points is only 16%16, we
compute the ‘‘hair-pin’’ contribution by brute force, namely
by solving the fermion propagator for all points without re-
lying on the noise method *40+ or Kuramashi method *41+.
Figure 15 shows the contribution of the second term in

each sector, whereas Fig. 16 shows the full (symmetrized) $
propagator at m#0.2 and "#0. We also present effective
mass plot in Fig. 17. We find that the fall of $ propagator is
steeper than that of # which gives qualitatively consistent
results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
making quantitative studies difficult. One of the major
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FIG. 14. " dependence of the pion mass at m#0.2. The open
symbols are the lattice data. The dashed line is the analytical result
of the " dependence in the continuum theory, where the normaliza-
tion is fitted by the lattice results. For "/(2#)&0.5, the pion mass
is proportional to cos("/2)2/3, which is in complete agreement with
the continuum results.
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FIG. 15. The propagator of $ in each sector at m#0.2.
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FIG. 16. The full propagator $ at m#0.2 and "#0 (closed
squares). The pion propagator is also plotted for comparison (open
circles). The propagators are normalized by the value at x#1.
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FIG. 17. The effective mass plot of the full $ propagator for
m#0.2, "#0. The dashed line shows the fit result.
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Figure 1: (Left) The Monte Carlo result of the pion mass is taken from ref. [5]. The reweighting method
was used to include the effect of the 𝜃 angle. (Right) The meson masses obtained by the improved one-
point-function and dispersion-relation schemes are plotted against 𝜃/2𝜋. The dashed and dash-dotted curves
denote the analytic results by the bosonization, 𝑀𝜋 (𝜃) = 𝑀𝜋 (0) | cos(𝜃/2) |2/3 and 𝑀𝜎 (𝜃) =

√
3𝑀𝜋 (𝜃),

respectively. Here the overall coefficient 𝑀𝜋 (0) is determined by averaging the results of the two schemes at
𝜃 = 0.

In figure 1, we compare our numerical results with the Monte Carlo calculation of the 𝜃-
dependent pion mass by Fukaya and Onogi in 2003 [5]. Even with careful treatment of the
reweighting factor, the Monte Carlo result suffers from the severe sign problem in the large 𝜃 region
(left panel). On the other hand, our results (right panel) of both the two schemes are precise even
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for large 𝜃 and consistent with each other, where the mass of not only the pion but also the sigma
meson can be computed. In particular, the dispersion-relation scheme has an advantage in studying
the system heuristically when low-lying states are unknown. The reason is that this scheme does
not rely on any local operators, unlike the Monte Carlo method which requires appropriate ones
depending on the target hadron.

In figure 1, we also compare the numerical results with the analytic calculation by the
bosonization, where the pion mass is predicted as 𝑀𝜋 (𝜃) ∝ |𝑚 cos(𝜃/2) |2/3 when the fermion
mass 𝑚 is small [4]. Furthermore, the WKB-type approximation gives a specific mass ratio,
𝑀𝜎 (𝜃) =

√
3𝑀𝜋 (𝜃), between the pion and sigma meson. These analytic results are depicted in

figure 1, normalized by the numerical data of the pion mass at 𝜃 = 0. The numerical results agree
with the analytic prediction, which indicates that the bosonization gives almost the correct answer
for the wide range of 𝜃.

This proceeding paper is organized as follows. In section 2, we review the lattice Hamiltonian
formalism and the numerical method. In section 3, we explain the improved one-point-function
scheme and show the simulation results. In section 4, we consider the dispersion-relation scheme
and show the result of the spectrum. Section 5 is devoted to the discussion.

2. Lattice Hamiltonian and calculation strategy

Let us briefly review the lattice Hamiltonian formalism for the numerical computation. We
consider the 2-flavor Schwinger model on an open interval. In this case, the Gauss’ law condition
can be solved explicitly, so that the Hamiltonian is described only by fermions after the gauge fixing.
We adopt the staggered fermion [6, 7] for the lattice discretization and apply the Jordan-Wigner
transformation to obtain the spin Hamiltonian with a finite-dimensional Hilbert space,

𝐻 =
𝑔2𝑎

8

𝑁−2∑︁
𝑛=0


𝑁 𝑓∑︁
𝑓 =1

𝑛∑︁
𝑘=0

𝜎𝑧
𝑓 ,𝑘

+ 𝑁 𝑓

(−1)𝑛 + 1
2

+ 𝜃
𝜋


2

− 𝑖

2𝑎

𝑁−2∑︁
𝑛=0

(
𝜎+

1,𝑛𝜎
𝑧
2,𝑛𝜎

−
1,𝑛+1 + 𝜎

+
2,𝑛𝜎

𝑧
1,𝑛+1𝜎

−
2,𝑛+1 − h.c.

)
+ 𝑚lat

2

𝑁 𝑓∑︁
𝑓 =1

𝑁−1∑︁
𝑛=0

(−1)𝑛𝜎𝑧
𝑓 ,𝑛
, (1)

which is convenient for applying quantum computing or tensor network algorithms. Here the lattice
fermion mass 𝑚lat is related to the mass 𝑚 of the continuum theory by 𝑚lat := 𝑚 − 𝑁 𝑓 𝑔

2𝑎/8 so that
the Z2 discrete chiral symmetry could be recovered in the chiral limit [8].

We use the density-matrix renormalization group (DMRG) [9–12] to study the Hamiltonian (1).
The ground state is variationally obtained as a matrix product state (MPS) that minimizes the energy
as a cost function, applying the low-rank approximation by the singular-value decomposition. In
the DMRG of the 2-flavor Schwinger model, potential difficulty arises from the entanglement
property. The MPS is an efficient representation of low-energy states of the (1+ 1)d gapped system
because the entanglement entropy is independent of the system size and accommodated by the
constant bond dimension. However, the gap of our model decreases as 𝜃 increases and the system
eventually becomes nearly conformal at 𝜃 = 𝜋 [4, 13], where the entanglement entropy scales as
𝑆EE ∼ (𝑐/3) log 𝑁 with the lattice size 𝑁 and the central charge 𝑐 = 1. Thus, the required bond
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dimension is no longer constant but 𝐷 ∼ 𝑁𝑐/3. In our calculation, we take at most 𝑁 = 320 and
𝑎 = 0.25, which results in the bond dimension 𝐷 ≲ 1400 at 𝜃 = 𝜋. This calculation is still doable
using a PC cluster or a single-node supercomputer.

In the following analyses, we fix the gauge coupling to 𝑔 = 1 to measure the energy scale in
this unit of the mass dimension 1 and set the fermion mass to 𝑚 = 0.1. The topological angle 𝜃 is
varied from 0 to 𝜋 in increments of 0.1/2𝜋. We used the C++ library of ITensor [14] to perform
the tensor network calculation.

3. Improved one-point-function scheme

In this section, we discuss the basic strategy of the improved one-point-function scheme and
present the numerical results for the 2-flavor Schwinger model. This scheme utilizes the boundary
as a source of excitation from the thermodynamic ground state. The key point is that the one-point
function decays exponentially as ⟨O(𝑥)⟩ ∼ 𝑒−𝑀𝑥 with the distance 𝑥 from the boundary, where 𝑀
is the mass of the lightest meson with the same quantum number as the operator O. We measure
⟨O(𝑥)⟩ and then compute the effective mass to obtain the meson mass 𝑀 by fitting.

For 𝜃 ≠ 0, the meson operators should be defined taking the operator mixing into account. We
deal with the operator mixing by using the correlation functions so that the operators can be defined
systematically. However, 𝜃 = 𝜋 is a special point where the pion and sigma meson are almost
massless. In this case, the one-point functions are no longer the exponential type but CFT-like.
Thus, we compare them with the analytic calculation of the WZW CFT, instead of computing the
meson masses.

In the following subsections, we first discuss the operator mixing and define the meson operators
in section 3.1. Next, we show the main numerical results for 0 ≤ 𝜃 < 𝜋 in section 3.2. Finally, the
one-point functions at 𝜃 = 𝜋 are investigated in section 3.3.

3.1 Operator mixing

Here we explain the method to resolve the operator mixing by using the information of the
correlation functions. We then define the meson operators to measure the appropriate one-point
functions for 𝜃 ≠ 0. The meson operators are formally written by the fermion bilinear operators
transformed by the 𝜃-depedent axial rotation as

𝜋𝑎 = −𝑖�̄� 𝑒𝑖 𝜃2 𝛾5
𝛾5𝜏𝑎𝜓, 𝜎 = �̄� 𝑒𝑖( 𝜃

2 +𝜔 (𝜃 ))𝛾5
𝜓, 𝜂 = −𝑖�̄� 𝑒𝑖( 𝜃

2 +𝜔 (𝜃 ))𝛾5
𝛾5𝜓, (2)

where the extra rotation 𝜔(𝜃) comes from the effect of the 𝜎 − 𝜂 mixing. Since the exact mixing
angle is not known, we determine 𝜔(𝜃) numerically.

The mixing angle can be extracted from the correlation matrix of the scalar and pseudo-scalar
operators,

𝑪±(𝑥, 𝑦) =
(
⟨𝑆±(𝑥)𝑆±(𝑦)⟩𝑐 ⟨𝑆±(𝑥)𝑃𝑆±(𝑦)⟩𝑐
⟨𝑃𝑆±(𝑥)𝑆±(𝑦)⟩𝑐 ⟨𝑃𝑆±(𝑥)𝑃𝑆±(𝑦)⟩𝑐

)
, (3)

where 𝑆+ ↔ �̄�𝜓 and 𝑃𝑆+ ↔ −𝑖�̄�𝛾5𝜓 denote the iso-singlet operators on the lattice, and 𝑆− and
𝑃𝑆− are their iso-triplet counterparts. The subscript 𝑐 means the connected part of the correlator.
Since 𝑪±(𝑥, 𝑦) is a real symmetric matrix, it can be diagonalized by an orthogonal matrix 𝑅(𝛿) with
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Figure 2: The mixing angles 𝛿− of the triplet and 𝛿+ of the singlets are plotted against 𝜃/2𝜋. The dashed
line depicts the expected linear behavior of 𝜃/2 for the triplet sector. The solid curve denotes the fitting result
𝜃/2 + 𝜔(𝜃) for the singlet sector.

a rotation angle 𝛿. Then 𝛿 corresponds to the mixing angle, and the eigenvalues are the correlation
functions of the meson operators. For example, the relation for the iso-singlet sector is given by

𝑪+(𝑥, 𝑦) = 𝑅(𝛿+)T

(
⟨𝜎(𝑥)𝜎(𝑦)⟩𝑐 0

0 ⟨𝜂(𝑥)𝜂(𝑦)⟩𝑐

)
𝑅(𝛿+). (4)

Using the matrix 𝑅(𝛿±), the appropriate meson operators 𝜋(𝑥), 𝜎(𝑥), and 𝜂(𝑥) can be defined as(
∗

𝜋(𝑥)

)
= 𝑅(𝛿−)

(
𝑆− (𝑥)
𝑃𝑆− (𝑥)

)
,

(
𝜎(𝑥)
𝜂(𝑥)

)
= 𝑅(𝛿+)

(
𝑆+(𝑥)
𝑃𝑆+(𝑥)

)
. (5)

Note that there is no mixing counterpart of the pion due to the absence of iso-triplet scalar particles.
We compute the mixing angle 𝛿± on the lattice with the size 𝑁 = 320 and the spacing 𝑎 = 0.25,

and the result is shown in figure 2. It is confirmed that the mixing angle for the triplet sector is
consistent with the trivial axial rotation 𝛿− = 𝜃/2 whereas that for the singlet sector deviates from
𝜃/2 as expected. The effect of the 𝜎 − 𝜂 mixing, 𝜔(𝜃), in eq. (2) can be analytically computed by
the bosonization leaving a few unknown parameters1. Indeed, the analytic form of 𝜃/2 + 𝜔(𝜃) fits
the numerical result of 𝛿+ well, as depicted by the solid curve in figure 2. The agreement of the
fitting result indicates consistency with the bosonized description of the 𝜎 − 𝜂 mixing at finite 𝑚.

3.2 Meson mass obtained from the one-point function

Next, we move on to the main result of the improved one-point-function scheme. The meson
mass is obtained from the exponential decay of the one-point function, which can be understood as
an analogy to the wall-source method in Lattice QCD. In Euclidean space, the spacial boundary is
translationally invariant in the imaginary-time direction, which imposes zero-momentum projection
as a wall source of mesons. Thus, the asymptotic behavior of ⟨O(𝑥)⟩ should be 𝑒−𝑀𝑥 for the target
meson of mass 𝑀 .

To measure the nonzero one-point function, the boundary state, namely the source of the meson,
must have the same quantum number as the target meson. Thus, we control the boundary condition
by attaching supplemental lattice sites, named “the wings regime”, to both ends of the 1d lattice, in
which we assign a different fermion mass 𝑚wings than the mass 𝑚 in the bulk. For the iso-singlet

1See section 4.1.1 in ref. [1] for a detailed discussion.
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Figure 3: The effective masses of the sigma meson (left) and pion (right) computed from their one-point
functions are plotted against the distance 𝑥 from the boundary. The solid curves depict the fitting results,
where the fitting range is between the vertical dashed lines.

mesons, we set the mass in the wings to a flavor-independent large constant, 𝑚wings = 𝑚0 ≫ 𝑚,
resulting in the Dirichlet boundary. As for the iso-triplet meson, we apply a flavor-asymmetric
chiral rotation, 𝑚wings = 𝑚0 𝑒

±𝑖Δ𝛾5 , to implement the isospin-breaking effect.
In this calculation, the lattice size of the bulk and the wings regime are𝑁 = 320 and 𝑁wings = 20,

respectively, with the spacing 𝑎 = 0.25. We first generate the ground state and obtain the correlation
matrix to define the meson operators as eq. (5). Then we measure the one-point function ⟨O(𝑥)⟩ and
compute the effective mass, 𝑀eff (𝑥) = −𝑑 log ⟨O(𝑥)⟩ /𝑑𝑥, as shown in figure 3. The effective mass
is expected to be constant at long distances. However, it is slightly curved by the contribution of
the excited states, which cannot be ignored as the meson mass becomes small for large 𝜃. Thus, we
assume the one-point functions to be ⟨O(𝑥)⟩ ∼ 𝐴𝑒−𝑀𝑥 + 𝐵𝑒−(𝑀+Δ𝑀 )𝑥 , incorporating the second-
lowest state with the mass gap 𝑀 +Δ𝑀 . We obtain the meson mass 𝑀 by fitting the effective mass,
resulting in the fitting curves shown in figure 3.

3.3 Nearly conformal behavior at 𝜃 = 𝜋

At 𝜃 = 𝜋, the 2-flavor Schwinger model approaches the nearly conformal theory [4, 13]. In
this case, the one-point functions are not the exponential type as shown in figure 4. Since the fitting
ansatz in section 3.2 does not work there, the corresponding effective mass is absent in figure 3.
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Figure 4: The one-point functions at 𝜃 = 𝜋 of the sigma meson (left) and pion (right) are plotted against 𝑥.
The fitting results based on the analytic forms (6) are depicted by the solid curves, where the fitting range is
between the vertical dashed lines.

We compare the one-point functions at 𝜃 = 𝜋 with the analytic calculation of the SU(2)1 WZW
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model on the finite interval 0 ≤ 𝑥 ≤ 𝐿, which predicts

⟨𝜎(𝑥)⟩ ∝ − 1√︁
sin(𝜋𝑥/𝐿)

, ⟨𝜋(𝑥)⟩ ∝ sin[Δ(1 − 2𝑥/𝐿)]√︁
sin(𝜋𝑥/𝐿)

, (6)

for the sigma meson with the Dirichlet boundary and the pion with the isospin-breaking boundary2.
The numerical data of the one-point functions can be fitted well by these analytic forms in the bulk
region, as depicted by the solid curves in figure 3. Thus, we numerically confirmed that the pion
and sigma meson at 𝜃 = 𝜋 are well described by the WZW CFT. Even when the system becomes
CFT-like, we can obtain consistent results of the one-point functions by the DMRG.

4. Dispersion-relation scheme

Let us discuss the dispersion-relation scheme, a distinctive strategy in the Hamiltonian formal-
ism. The key idea of this scheme is to generate the energy eigenstates and identify the momentum
excitations of each meson heuristically by the quantum numbers. Then the dispersion relation
𝐸 =

√
𝐾2 + 𝑀2 is obtained from their energy 𝐸 and momentum square 𝐾2. The low-energy excited

states can be generated by the DMRG, modifying the Hamiltonian as

𝐻ℓ = 𝐻 +𝑊
ℓ−1∑︁
ℓ′=0

|Ψℓ′⟩ ⟨Ψℓ′ | , (7)

where ℓ is the level of the target state and𝑊 > 0 is a weight to impose the orthogonality [15, 16].

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
E 0

/2 = 0.0

ground state M
M
M

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2 /2 = 0.1

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2 /2 = 0.2

0.0 0.2 0.4 0.6 0.8
K2 K2 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
E 0

/2 = 0.3

0.0 0.2 0.4 0.6 0.8
K2 K2 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2 /2 = 0.4

0.0 0.2 0.4 0.6 0.8
K2 K2 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2 /2 = 0.5

Figure 5: The energy gap Δ𝐸ℓ is plotted against the square of total momentum Δ𝐾2
ℓ

for each meson. The
dashed lines depict the fitting results of the dispersion relations. The resulting meson masses are indicated
by the markers at the left endpoints with error bars.

In the calculation of the dispersion-relation scheme, we set the lattice size to 𝑁 = 100, the
lattice spacing to 𝑎 = 0.2, and the weight in eq. (7) to𝑊 = 10. We generate the energy eigenstates
using the Hamiltonian (7) with and without the singlet projection, and then measure the energy

2See appendix A in ref. [1] for computational details.
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gap Δ𝐸ℓ = 𝐸ℓ − 𝐸0 and the momentum square Δ𝐾2
ℓ
= ⟨𝐾2⟩ℓ − ⟨𝐾2⟩0. Note that the translational

invariance is broken by the open boundary in our setup and thus ⟨𝐾2⟩ is not a genuine quantum
number. Nevertheless, it works well empirically as an approximation by subtracting the ground-state
contribution ⟨𝐾2⟩0.

We identify the series of triplets with the monotonically increasing momentum as the pions,
which have the isospin 𝐽 = 1. Similarly, we identify the lowest series with 𝐽 = 0 as the sigma
mesons. At 𝜃 = 0, we also find the eta meson with 𝐺 < 0. For 𝜃 ≠ 0, the eta meson is no
longer stable due to the absence of the 𝐺-parity, and thus the corresponding states are replaced by
scattering states. We plot the energy gap Δ𝐸ℓ against the momentum square Δ𝐾2

ℓ
for each meson

in figure 5. Then we fit these data points by Δ𝐸 =
√
𝑏2Δ𝐾2 + 𝑀2 with parameters 𝑀 and 𝑏. The

result of 𝑀 is regarded as the meson mass as the extrapolation to Δ𝐾2 → 0.

5. Discussion

We investigated the 𝜃-dependent mass spectrum of the 2-flavor Schwinger model in the lattice
Hamiltonian formalism. The one-point-function and dispersion-relation schemes were developed
in our previous work [3] and have now been extended to the case of 𝜃 ≠ 0 [1]. These two schemes
can reproduce the mass spectrum even for large 𝜃 without the sign problem, which was not possible
by the Monte Carlo study with the reweighting technique [5].

Our numerical results at the finite fermion mass 𝑚/𝑔 = 0.1 agree with the analytic result of
the bosonized model that assumes 𝑚/𝑔 ≪ 1. The mechanism of this agreement and the range of
applicability remain theoretical questions. The 2-flavor Schwinger model at 𝜃 = 𝜋 shows nearly
conformal behavior, where the mass gap is invisibly small for the numerical study [4, 13]. In
this case, the DMRG results of the one-point functions are consistent with the CFT calculation,
indicating that the model at 𝜃 = 𝜋 is well approximated by the SU(2)1 WZW model.

We obtained promising results thanks to the efficient tensor network algorithm (DMRG) in the
(1+1)d. For the extension to higher dimensions, implementing our method on a quantum computer
would be an important prospect. It is also interesting to apply the method to finite-density systems,
which suffer from the sign problem in the conventional Monte Carlo method.
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