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The study of entanglement in quantum field theories provides insight into universal properties
which are typically challenging to extract by means of local observables. However, calculations
of quantities related to entanglement in gauge theories are limited by ambiguities that stem from
the non-factorizability of the Hilbert space. On the other hand, (2+1)-dimensional lattice gauge
theories are known to admit a dual description in terms of spin models, for which the replica trick
and Rényi entropies are well defined. In this contribution, we exploit Kramers-Wannier duality to
perform a numerical study of the entropic c-function of the (2+1)-dimensional Z2 gauge theory
in the continuum limit. Our results are compared with analytical predictions from holographic
models.
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1. Introduction

Gauge theories represent a central paradigm in physics. One one hand, the fundamental
interactions in Nature can be described in terms of gauge theories, which constitute the backbones
of the Standard Model of particle physics. Also, in condensed matter systems, gauge theories are
realized as low-energy descriptions of different phases of matter. As such, the study of quantum
phenomena emerging as a consequence of gauge symmetry is relevant for many areas of physics.

Among the many characteristic phenomena of quantum systems, one of the most ubiquitous
is entanglement, i.e. the existence of quantum correlations that cannot be described in classical
terms [1]. Apart from being a practical resource in quantum simulations [2], the study of entangle-
ment in many-body quantum systems finds applications ranging from quantum phase transitions [3]
to quantum gravity and holography [4, 5].

Such correlations become evident as one tries to give a description of a portion of a quantum
system alone; specifically, given a Hilbert space which admits a factorization H = H𝐴⊗H𝐵, where
𝐴 and 𝐵 are two complementary subsystems, one can define a reduced density matrix encoding
information on the subsystem 𝐴 alone by tracing the density matrix 𝜌 of the system over a complete
basis of 𝐵, 𝜌𝐴 = Tr𝐵 𝜌. If 𝜌 describes a pure state, then the Rényi entropies,

𝑆𝑛 =
1

1 − 𝑛
log Tr 𝜌𝑛𝐴, (1)

measure the amount of bipartite entanglement between 𝐴 and 𝐵, being entanglement monotones [6].
The entanglement entropy 𝑆 = −Tr(𝜌𝐴 log 𝜌𝐴) is recovered as the 𝑛 → 1 limit of the Rényi entropy
of order 𝑛.

Given the central rôle of gauge theories in physics and, at the same time, the importance of
entanglement in the study of quantum phenomena, it comes as a problem the fact that defining
entanglement in a gauge theory is a non-trivial matter. The presence of local symmetries, and
the consequent Gauß’s law, imply that the gauge invariant portion of the Hilbert space does not
admit a tensor product decomposition in subspaces with only gauge invariant states [7–15]. For
the purposes of this work, the main consequence is that calculations of entanglement measures in
gauge theories, e.g. with Monte Carlo simulations, are plagued with ambiguities; this fact limits
the possibility of investigating highly interesting phenomena through the lens of entanglement.

One of such phenomena is confinement. Following the paper by Klebanov et al. [16], there
have been different works using Monte Carlo simulations to study the behavior of the Rényi entropy
and related quantities in gauge theories [17–22]. All of these studies exploit a discretized version of
the replica trick [23], where the Rényi entropy is expressed in terms of a ratio of partition functions

Tr 𝜌𝑛𝐴 =
𝑍𝑛

𝑍𝑛
, (2)

where 𝑍𝑛 denotes the partition function of 𝑛 independent copies of a given system, while 𝑍𝑛

represents the same theory on a Riemann surface, obtained by gluing together the copies through a
cut, corresponding to the subsystem 𝐴 at fixed Euclidean time. However, due to the aforementioned
ambiguity in the factorization of the Hilbert space, it is unclear how a lattice version of the Riemann
surface should be constructed, and in particular how different replicas should be glued together.
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In [21], we addressed this problem by providing an unambiguous way to compute entanglement
measures in gauge theories which admit a Kramers-Wannier dual [24, 25]. This, together with the
efficient algorithm developed in [26], allowed us to perform a high precision test of the conjectures
of [16], finding good agreement with the theoretical predictions.

2. Entanglement in gauge theories

In gauge theories, the lack of a natural way to factorize the gauge invariant Hilbert space leads
to different approaches to study entanglement, among which two are broadly used. In the extended
Hilbert space approach [7] one locally enlarges the gauge invariant Hilbert space, including a
minimal amount of states violating Gauß’s law to ensure factorizability. Here, instead, we review
the second approach [9], which focuses on the algebra of gauge invariant operators acting on the
Hilbert space of the theory.

In an Abelian1 lattice gauge theory the algebra of operators A is generated by the field (or
coordinate) operators 𝑈𝑟

𝑙
, where 𝑙 labels the link and 𝑟 the one-dimensional representation of the

gauge group, and by the electric-field (or momentum) operator 𝐿
𝑔

𝑙
, associated with the element

of the gauge group 𝑔. As the field operators change under gauge transformations, one can further
define a subsetA𝐺 of gauge invariant operators which includes Wilson loops𝑊𝑟

Γ
=
∏

𝑙∈Γ𝑈
𝑟
𝑙
, where

Γ is a closed loop, as well as the electric-field operators. The crucial idea of the operator approach
is that we can then identify a spatial subsystem 𝐴 as the subalgebra A𝐺 (𝐴) ∈ A𝐺 acting on 𝐴.
The reduced density matrix is then the unique operator in A𝐺 (𝐴) satisfying Tr(O𝜌𝐴) = Tr(O𝜌)
∀O ∈ A𝐺 (𝐴).

The reduced density matrix obtained in this way is by construction gauge invariant, but it
strongly depends on the choice of the subalgebra, which is arbitrary to some extent. Indeed,
different choices of boundary operators lead to different centers of the algebra, i.e. the subset
Z ⊂ A𝐺 (𝐴) commuting with all the other elements of the algebra. In particular, in the so called
electric-center algebra, one includes all the electric operators at the boundary, while excluding all
of them leads to the magnetic-center choice [9].

As a consequence of the presence of a non-trivial center, all the operators in A𝐺 (𝐴), including
𝜌𝐴, are block diagonal in a basis that diagonalizes Z, with different blocks identifying different
superselection sectors of the theory. In particular

𝜌𝐴 =

©«
𝑝1𝜌1 0 . . . 0

0 𝑝2𝜌2 . . . 0
...

...
. . .

...

0 0 . . . 𝑝𝑚𝜌𝑚

ª®®®®®¬
, (3)

where 𝑝𝑘 is the probability distribution of the superselection sectors; the entanglement entropy can
then be decomposed as

𝑆 = −
∑︁
𝑘

𝑝𝑘 log 𝑝𝑘 +
∑︁
𝑘

𝑝𝑘𝑆(𝜌𝑘), (4)

1For non-Abelian theories the analysis is essentially the same with some minor modifications.
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and a similar equation holds for the Rényi entropy. In the previous expression, the first term, which
is the Shannon entropy of the probability distribution 𝑝𝑘 , is sensitive to the choice of the center,
which is a purely ultraviolet (UV) piece of information, which in principle should not affect the
infrared (IR) physics. It was indeed found that quantities with a well defined continuum limit, such
as the mutual information [9, 27], converge toward the same IR value regardless of the choice of Z.

It is therefore possible to use entanglement related quantities to unambiguously investigate the
IR physics of gauge theories. In doing that, however, as the explicit structure of the superselection
sectors as well as the calculation of the two terms of (4) separately is beyond the reach of typical
numerical methods, one has to rely on the replica trick and lattice simulations. The transition from
the choice of an algebra in the Hamiltonian formulation to the construction of a replica space in the
Lagrangian picture is non-trivial [15], especially as one further seeks to discretize the replica space
to perform numerical simulations.

The approach we followed in [21] is based on the fact that, for spin models with a factorizable
Hilbert space, no ambiguities arise in the construction of a discretized replica space. At the same
time, there exist spin models that can be exactly mapped to gauge theories, providing a way to
bypass the need of a direct definition of the replica geometry in the gauge theory. Here, the map we
are interested in is the Kramers-Wannier duality.

3. Kramers-Wannier duality

The Kramers-Wannier duality [24, 25] is a transformation between two different lattice theories
preserving the partition function, up to numerical constants (a detailed review can be found in [28]).
In what follows, we focus on dualities in 𝐷 = 2 + 1 dimensions for isotropic cubic lattices, with an
infinite extent in all directions. For concreteness, we focus on the Ising model, though the discussion
can be generalized to other spin models with global Abelian symmetries.

By means of a discrete Fourier transform, the partition function of the 3𝐷 Ising model

𝑍 (𝛽) =
∑︁
{𝜎}

exp ©«𝛽
∑︁
𝑖

2∑︁
𝜇=0

𝜎𝑖𝜎𝑖+�̂�
ª®¬ , (5)

can be mapped, up to numerical factors, to the partition function of the Z2 lattice gauge theory

𝑍gauge(𝛽∗) =
∑︁
{𝑈}

exp ©«𝛽∗
∑︁
𝑖

2∑︁
𝜇,𝜈=0

𝑈𝑖,𝜇𝑈𝑖+�̂�,𝜈𝑈
†
𝑖+�̂�,𝜇𝑈

†
𝑖,𝜈

ª®¬ , (6)

where 𝑈 ∈ {±1} and the coupling 𝛽∗ is connected to 𝛽 through the relation

𝛽∗ = −1
2

log tanh 𝛽. (7)

In [21] we made use of this relation to map the ratio of partition functions (2) from the Ising model
to the Z2 gauge theory, finding

𝑍𝑛

𝑍𝑛
|Ising ∝ 𝑍𝑛

𝑍𝑛
|gauge. (8)
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As the previous ratio directly enters the calculation of the Rényi entropy, it turns out that the entropy
itself is not mapped through the duality transformation. In particular, the entropy of the gauge
model is larger than the entropy of the spin model, consistently with other studies in literature [29].
At the same time, however, both Rényi and entanglement entropies depend on UV details, such
as the lattice discretization and the choice of the algebra; UV-finite quantities defined out of these
entropies are not only expected to converge towards the same IR limit, regardless of the UV details,
but also to be preserved under the Kramers-Wannier duality [30].

The UV-finite quantity we analyze here is the entropic c-function

𝐶𝑛 =
𝑙𝐷−1

|𝜕𝐴|
𝜕𝑆𝑛

𝜕𝑙
, (9)

where 𝐷 is the number of spacetime dimensions, |𝜕𝐴| the area of the entangling surface and 𝑙

the linear size of the subsystem 𝐴. Remarkably, this quantity is known to be proportional to the
number of effective degrees of freedom of a given quantum field theory [31, 32]. We will further
discuss this aspect in the following section. By means of the replica trick, the entropic c-function
also admits the following expression

𝐶𝑛 =
𝑙𝐷−1

|𝜕𝐴|
1

𝑛 − 1
lim
𝑎→0

1
𝑎

log
𝑍𝑛 (𝑙)

𝑍𝑛 (𝑙 + 𝑎) . (10)

On the lattice, the derivative with respect to 𝑙 can be approximated by a finite difference and 𝑎

becomes the smallest length scale that can be resolved, namely the lattice spacing. As discussed in
detail in [21], one can show that the Karamers-Wannier duality preserves the entropic c-function,
i.e.

𝐶
Ising
𝑛 = 𝐶

gauge
𝑛 . (11)

This equality can be used in two ways. On one hand, starting from the well defined replica space of
the spin model, one can unambiguously derive the dual replica geometry. This is discussed in detail
in [21], where we analyzed the dual geometry of a number of theories, including the Z2 and the
𝑈 (1) gauge theories. Here, we focus on a complementary approach: by simulating the replica space
of the Ising model, we compute the left-hand side of (11) by means of Monte Carlo simulations,
and use the result to study the entropic c-function of the dual gauge theory.

4. Monte Carlo simulations

In this section we discuss a Monte Carlo study of the ground-state entropic c-function of
the (2 + 1)-dimensional Z2 lattice gauge theory, exploiting duality. The target quantity of the
simulation is the ratio 𝑍𝑛 (𝑙)/𝑍𝑛 (𝑙 + 𝑎) (10), therefore an efficient algorithm to compute ratios of
partition functions is needed. In recent years there has been significant progress in non-equilibrium
Monte Carlo simulations, which, being based on the Jarzynski’s theorem [33], yield very precise
estimates of ratios of partition functions [34–40]; in particular, we used the algorithm introduced
in [26] as a generalization of [41].

We simulated a two-replica system to extract the entropic c-function associated to the second
Rényi entropy; in particular, we chose the subsystem 𝐴 to be a slab, maximally extended in one of

5
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Figure 1: An example of a thermodynamic (left panel) and a continuum (right panel) limits.

the two spatial directions, and with thickness 𝑙/𝑎 in the other one. In all the simulations we fixed
the length of the Euclidean time direction to be at least 10 𝑁𝜏,𝑐, where 𝑁𝜏,𝑐 is the critical length
of the deconfinement transition for the Z2 gauge theory. In this regime, thermal fluctuations are
suppressed and 𝐶2 receives contributions only from genuinely quantum fluctuations. For the scale
setting we followed ref. [42].

We focused on the confining regime of the Z2 gauge theory, which is mapped to the broken-
symmetry phase of the Ising model, 𝛽 > 𝛽𝑐. By evaluating𝐶2 for a range of volumes and couplings,
we were able to perform the first thermodynamic and continuum extrapolation of such quantity in
a confining gauge theory in literature, see Fig. 1. Being our results free of lattice artifacts, we can
then make comparison with analytical predictions.

In [16], the authors focused on the entanglement entropy of confining quantum field theories
with a holographic dual. The calculation of the entanglement entropy in a slab geometry, as the
one we used for our simulations, leads to the following results. As the thickness of the slab is
small compared to typical length-scales of the theory, the entropic c-function scales as 𝑁2

𝑐 , where
𝑁𝑐 is the number of colors. In a QCD-like theory, this corresponds to the number of gluons in the
theory. For larger slabs the entropic c-function undergoes a sharp transition, becoming insensitive
to the number of colors of the theory, as the long-distance spectrum of the theory is indeed made of
colorless excitations, e.g. glueballs or hadrons. The behavior of the c-function is indeed consistent
with its relation with the effective number of degrees of freedom of a theory. Furthermore, this
motivated the authors of [16] to conjecture that entanglement can be used to probe confinement.

In non-holographic theories, such as 𝑆𝑈 (𝑁) gauge theories, analytic calculations are unfeasible;
nonetheless in [16] it was conjectured that such theories can display an exponential decay for large
enough distances, rather than a sharp transition. One can indeed approximate a gas of glueballs as
weakly interacting bosons. In 1 + 1 dimensions the entropic c-function of a free scalar is known
analytically [43], and one can obtain the same result in higher dimension by means of dimensional
reduction. In 2+ 1 dimensions, in particular, one obtains the following result, up to a multiplicative

6
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Figure 2: Thermodynamic and continuum extrapolation of 𝐶2 in the (2 + 1)-dimensional Z2 gauge theory.
Data are compared with two models, a power-law decay at short distances (compared to the inverse mass-gap),
and an exponential decay at large distances.

constant

𝐶2 = 𝑙

∫
d k exp

(
−2

√︁
𝑚2 + k2𝑙

)
, (12)

where 𝑙 is the length of the slab and 𝑚 the mass of the scalar.
In Fig. 2 the results of the thermodynamic and continuum extrapolation of the entropic c-

function in the (2 + 1)-dimensional Z2 gauge theory are displayed. 𝐶2 is normalized such that

�̄�2(𝑙) =
𝐶2(𝑙)
𝐶CFT

2
𝐶CFT

2 = 𝐶2(0). (13)

The value of 𝐶CFT
2 has been determined in [44]. Here, we use as a reference scale the inverse

mass-gap of the theory 𝑚𝑔, whose value has been taken from [45]. At small length scales we
modeled our data with a power-law decay

𝑓 (𝑙𝑚𝑔; 𝐵, 𝑐) = 𝐵/(𝑙𝑚𝑔)𝑐, (14)

obtaining as best fit estimates of the parameters 𝐵 = 0.360(9) and 𝑐 = 0.48(2), with a reduced
chi-squared 𝜒2

red = 1.02 (orange curve in Fig. 2). At large length scales, we fitted the data with the
function

𝑓 (𝑙𝑚𝑔; 𝐴, 𝛼) = 𝐴 𝑙𝑚𝑔

∫
d k exp

(
−2𝛼

√︁
1 + k2𝑙𝑚𝑔

)
, (15)

finding 𝐴 = 0.33(3) and 𝛼 = 0.360(19), with 𝜒2
red = 0.84 (cyan curve in Fig. 2).

The following comments are now in order. First, this study [21] is the first numerical confir-
mation of the prediction (12), as our data are perfectly described by such functional form. Second,

7
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we are also able to determine which length scale of the theory is responsible for the transition from
a power-law to an exponential decay: indeed, both the approximations (14) and (15) break down
around 𝑙𝑚𝑔 = 1. Notice that a very similar behavior has been pointed out in a study of other
entanglement measures in the massless and massive Schwinger model [46].

5. Conclusions

In this contribution we discussed the proposals we made in [21] of using Kramers-Wannier
duality as a tool for unambiguous studies of the entanglement content of Abelian gauge theories.
In particular, one can either derive the replica geometry of the gauge theory by dualizing the spin-
model lattice, or perform simulations of the entropic c-function of the spin model to study the
same quantity on the gauge-theory side of the duality. In this contribution we discussed the second
approach and we illustrated the Monte Carlo simulation we performed to extract the continuum
entropic c-function of the Z2-gauge theory in 2 + 1 dimensions. Our analysis is the first numerical
confirmation of the prediction done in [16] in a (2 + 1)-dimensional, non-holographic theory.

The same study can be done in any Abelian gauge theory admitting a dual description in terms
of a spin model, such as the 𝑈 (1) gauge theory. For the non-Abelian case, even though duality
transformations are known, they are much more involved, and a better theoretical understanding
is needed. Also, moving to gauge theories with continuous groups might require more powerful
algorithms to estimate ratios of partition functions, such as flow-based techniques [47]. We plan to
address these research directions in future works.
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