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Quantum Simulation of Large 𝑁𝑐 Lattice Gauge Theories Anthony N. Ciavarella

1. Introduction

Quantum computers offer the potential to explore the dynamics of strongly coupled gauge
theories with computational resources that scale polynomially in the system size [1–7]. This is
anticipated to enable first principle simulations of the inelastic scattering of hadrons, calculations
of the QCD shear viscosity and other observables that involve real-time dynamics [3–6, 8]. The
development of the first quantum computers has enabled exploratory studies of one-dimensional
systems and small two-dimensional systems [9–32]. The quantum simulation of systems with
multiple spacial dimensions has been limited by the complexity of implementing plaquette operators.
This has motivated searches for more practical encodings of gauge fields onto quantum hardware.

In the study of 𝑆𝑈 (𝑁𝑐) gauge theories, it has proven fruitful to work in the large 𝑁𝑐 limit and
expand in powers of 1/𝑁𝑐 [33–37]. In this limit, the theory simplifies dramatically. This limit
provides a starting point for a description of meson interactions and is an essential ingredient in the
parton shower approximation [34, 35, 38, 39]. In this work, it will be shown how to combine a large
𝑁𝑐 expansion with the Hamiltonian formulation of lattice gauge theories. This enables simplified
encodings of the gauge fields onto discrete degrees of freedom which can be used in near-term
quantum simulations.

2. Large 𝑁𝑐 Counting

In the Hamiltonian formulation of 𝑆𝑈 (𝑁𝑐) lattice Yang-Mills, each link on the lattice has a
Hilbert space spanned by states of the form |𝑈⟩ where 𝑈 ∈ 𝑆𝑈 (𝑁𝑐). Alternatively, the Hilbert
space can be described in terms of irreducible representations with basis states | 𝑗 , 𝑚𝐿 , 𝑚𝑅⟩ where
𝑗 specifies an irreducible representation, and 𝑚𝐿/𝑅 represents a component of that representation
associated with the left (right) side of that link. This irrep, also known as electric, basis is discrete
which makes it suitable for use in quantum simulation. In this basis, the electric energy operator
on each link is diagonal,

𝐸̂2 | 𝑗 , 𝑚𝐿 , 𝑚𝑅⟩ = 𝐶 ( 𝑗) | 𝑗 , 𝑚𝐿 , 𝑚𝑅⟩ , (1)

where𝐶 ( 𝑗) is the Casimir of the representation 𝑗 and the matrix elements of the parallel transporters
are given by 〈

𝑗 ′, 𝑚′
𝐿 , 𝑚

′
𝑅

�� 𝑈̂𝛼𝛽 | 𝑗 , 𝑚𝐿 , 𝑚𝑅⟩ =

√︄
dim( 𝑗)
dim( 𝑗 ′)𝐶

𝑗′𝑚′
𝐿

𝑗𝑚𝐿 ;𝐹𝛼
𝐶

𝑗′𝑚′
𝑅

𝑗𝑚𝑅 ;𝐹𝛽
, (2)

where𝐶𝐴𝑎
𝐵𝑏;𝐶𝑐

is the Clebsch-Gordan coefficient for the representation 𝐴 being formed by combining
representations 𝐵 and 𝐶, and 𝐹 is the fundamental representation of the gauge group. Gauge
invariant operators can be constructed by taking products of parallel transporters around some
closed curve, i.e.,

𝑈̂𝐶 =
∏
𝑙∈𝐶

∑︁
𝑠𝑖

𝑈̂𝑙
𝑠𝑖 ,𝑠𝑖+1

, (3)

where 𝑙 are the links along the curve 𝐶. The Kogut-Susskind Hamiltonian [40–43] for Hamiltonian
lattice gauge theory is given by

𝐻̂ =
∑︁
𝑙

𝑔2

2
𝐸̂2
𝑙 −

1
2𝑔2

∑︁
𝑝∈plaquettes

(
□̂𝑝 + □̂†

𝑝

)
, (4)
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Figure 1: Graphical representations of Young diagrams in terms of arrows.

where 𝑔 is the strong coupling constant, 𝐸̂2
𝑙

is the electric energy operator on link 𝑙 and □𝑝 is the
product of parallel transporters on plaquette 𝑝. Note that the following discussion will focus on
2 + 1𝐷, but the techniques should work in any spacetime dimension.

To determine what electric basis states need to be represented on a quantum computer to
simulate dynamics, we can consider generating the vacuum state by adiabatically turning on the
plaquette terms in the Hamiltonian. Excited states in the simplest topological sector can be obtained
by further applications of electric energy or plaquette operators to the state. From this approach, it
can be seen that the only physically relevant electric basis states are those with non-zero overlap on
states of the form ��{𝑃𝑝, 𝑃̄𝑝}

〉
≡

∏
𝑝

□̂
𝑃𝑝

𝑝 □̂
†𝑃̄𝑝

𝑝 |0⟩ , (5)

where |0⟩ is the electric vacuum state. One can therefore classify all states in this topological sector
by the minimum number of plaquette operators and its conjugate that are required to reach it from
the vacuum. Therefore, the large 𝑁𝑐 scaling of different basis states can be determined by the
maximal overlap of the basis state with states of the form

��{𝑃𝑝, 𝑃̄𝑝}
〉
≡ ∏

𝑝 □̂
𝑃𝑝

𝑝 □̂
†𝑃̄𝑝

𝑝 |0⟩.
To aid in the large 𝑁𝑐 counting, a graphical notation for gauge invariant states will be intro-

duced. Physical states are subject to a constraint from Gauss’s law which requires that the sum
of representations on each vertex of the lattice forms a singlet. On a lattice where each vertex is
connected to at most three links, gauge invariant states can be specified by the representation 𝑅 on
each link and a specification on each vertex of how the links add to form a singlet. For 𝑆𝑈 (𝑁𝑐)
gauge groups, a representation 𝑅 can be labeled by a Young diagram, which can be specified through
the number of columns with 1, 2, . . . , 𝑁 − 1 boxes. For 𝑆𝑈 (3) only two numbers are required, and
the labels are often chosen as (𝑝, 𝑞), with 𝑝 labeling the number of columns with a single box, and
𝑞 labeling the number of columns with two boxes. Young diagrams can be represented by lines with
arrows, as illustrated in Fig. 1. One can see that fundamental and anti-fundamental representations
can be represented either by lines with a single arrow in one direction or by lines with a double
arrow in the opposite direction. More complex representations can be built by combining such
lines together. For lattices where vertices connect to more links, such as a square lattice in 2D or
3D, not all states that can be labeled by the representation above are linearly independent, leading
to an ambiguity in labeling the basis states. This is due to the so-called Mandelstam constraints,
which relate contractions of representation indices across a vertex. A point-splitting procedure can
be performed to split each vertex into three link vertices connected by virtual links, which lifts
this ambiguity. In this point-split lattice, the gauge-invariant states can be specified with the same
assignment of labels used on a trivalent lattice. There is an equivalent labeling of the states of the

3
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Figure 2: Graphical representations of basis states on a point-split lattice.

physical Hilbert space that will prove useful, using the arrow representation introduced above. This
is illustrated in Fig. 2, and will be called a “loop representation” In this representation, each state is
labeled by a set of loops 𝐿𝑖 , together with a specification 𝑎ℓ , which denotes the way the arrows at
each link ℓ having more than one loop pass through being combined. Each loop needs to specify
which plaquettes are encircled and in which order, while 𝑎ℓ contains the information on how to
combine lines of multiple loops into single or double arrows. Note that this loop representation is
simply a graphical representation of the states with definite representation at each link.

With this graphical notation, large 𝑁𝑐 scaling rules can be derived for basis states |{𝐿𝑖 , 𝑎ℓ}⟩.
The large𝑁𝑐 scaling of a state, |{𝐿𝑖 , 𝑎ℓ}⟩ is determined by the large𝑁𝑐 expansion of

〈
{𝐿𝑖 , 𝑎ℓ}

��{𝑃𝑝, 𝑃̄𝑝}
〉

for the minimal choice of 𝑃𝑝 and 𝑃̄𝑝 to obtain a nonzero overlap. Defining |{𝐿𝑖}⟩ =
∏

𝑖𝑈𝐿𝑖
|0⟩

where 𝑈𝐿𝑖
is a product of parallel transporters along the loop 𝐿𝑖 and using that the overlap

⟨{𝐿𝑖 , 𝑎ℓ}|{𝐿𝑖}⟩ isO(1) in the𝑁𝑐 scaling, the𝑁𝑐 scaling is determined by the overlap
〈
{𝐿𝑖}

��{𝑃𝑝, 𝑃̄𝑝}
〉
.This

overlap can be evaluated in the magnetic basis through inserting 1 =
∏

links l
∫
𝑑𝑈𝑙 |𝑈𝑙⟩ ⟨𝑈 |𝑙. To

evaluate the large 𝑁𝑐 scaling of these integrals, the identity∫
𝑑𝑈

𝑞∏
𝑛=1

𝑈𝑖𝑛 𝑗𝑛𝑈
∗
𝑖′𝑛 𝑗

′
𝑛
=

1
𝑁

𝑞
𝑐

∑︁
permutations k

𝑞∏
𝑛=1

𝛿𝑖𝑛𝑖′𝑘𝑛
𝛿 𝑗𝑛 𝑗

′
𝑘𝑛

+ O
(

1
𝑁

𝑞+1
𝑐

)
, (6)

will be used [44]. The large 𝑁𝑐 scaling will be determined by the permutation of indices contraction
that gives the largest factors of 𝑁𝑐. A diagrammatic method of evaluating the large 𝑁𝑐 scaling is
shown in Fig. 3.

First, the plaquette operators being applied are placed over loops in the final state. To determine
the powers of 𝑁𝑐 that come from contracting the Kronecker 𝛿s, one can erase the middle of each
link in the diagram and connect the lines from the same vertex. This leaves a set of 𝑣 closed loops
involving one vertex each, and each of these closed loops contributes a factor of 𝑁𝑐 in the numerator.

4

https://orcid.org/0000-0003-3918-4110


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
0
6

Quantum Simulation of Large 𝑁𝑐 Lattice Gauge Theories Anthony N. Ciavarella

Figure 3: Graphical method to obtain the scaling of the overlap matrix
〈
{𝐿𝑖}

��{𝑃𝑝 , 𝑃̄𝑝}
〉
. The top example

contains two loops, each encircling a single plaquette 𝑚1 = 𝑚2 = 1, while the bottom example has a
single loop encircling 2 loops 𝑚1 = 1. This gives for the top example 𝑞1 = 𝑞2 = 1 + 3 × 1 = 4 and
𝑣1 = 𝑣2 = 2 + 2 × 1 = 4, giving the final scaling 𝑁0

𝑐 . For the bottom example we have 𝑞1 = 1 + 2 × 3 = 7 and
𝑣1 = 2 + 2 × 2 = 6, giving the final scaling 1/𝑁𝑐.

Each loop 𝐿𝑖 therefore contributes a factor 𝑁𝑣𝑖−𝑞𝑖
𝑐 and the the total 𝑁𝑐 scaling is given by

𝑁
𝑣−𝑞
𝑐 , 𝑞 ≡

∑︁
𝑖

𝑞𝑖 , 𝑣 ≡
∑︁
𝑖

𝑣𝑖 (7)

to the final overlap. Since each 𝑈𝑖 𝑗 in Eq. (6) corresponds to a line in the figure, one immediately
finds that 𝑞 = 𝑛𝑙/2, where 𝑛𝑙 is the total number of lines on each link in the diagram. Denoting by
𝑚𝑖 the number of plaquettes encircled by each loop 𝐿𝑖 , one needs 𝑚𝑖 plaquette operators for each
loop. The total number of lines is then given by 𝑛𝑙 = 2 + 6𝑚𝑖 , and the total number of closed loops
𝑛𝑣 is given by 2 + 2𝑚𝑖 for each loop in the basis. Thus one finds

𝑞𝑖 = 1 + 3𝑚𝑖 , 𝑣𝑖 = 2 + 2𝑚𝑖 . (8)

Putting this together, one finds that each loop contributes a factor of 𝑁1−𝑚𝑖
𝑐 to the overall scaling of

the overlap, such that 〈
{𝐿𝑖 , 𝑎ℓ}

��{𝑃𝑝, 𝑃̄𝑝}
〉
∝

∏
𝑖

𝑁1−𝑚𝑖
𝑐 , (9)

This implies that the states that can be reached to leading order in 1/𝑁𝑐 are those that only involve
loops 𝐿𝑖 with 𝑚𝑖 = 1. Therefore, the only overlap that survives in the large 𝑁𝑐 limit is the one with
states |{𝐿𝑖 , 𝑎ℓ}⟩ for which each loop encircles exactly one plaquette. At order 1/𝑁𝑐, states with
loops extending over two plaquettes will be present.

3. Truncated Hamiltonians

3.1 Large 𝑁𝑐 Limit

With the large 𝑁𝑐 scaling determined, it is possible to develop truncations of the Kogut-
Susskind Hamiltonian that both limit the electric energy per link and truncate states at some order
in the large 𝑁𝑐 expansion. The harshest possible truncation keeps only the fundamental and anti-
fundamental representations (3 and 3̄ for 𝑆𝑈 (3)) and only allows loops around single plaquettes.
The Hilbert space at this truncation can therefore be described by assigning a qutrit to each plaquette
in the lattice. The states of the qutrit will be labelled by |0⟩, |⟲⟩, and |⟳⟩. Physical states are
subject to the constraint that neighboring plaquettes are not simultaneously excited. For example,

5
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in a two plaquette system, the states |⟲⟩ |0⟩ and |⟳⟩ |0⟩ are physical while |⟳⟩ |⟳⟩ and |⟲⟩ |⟳⟩
are not, since it would give rise to the common link having 𝑝 + 𝑞 > 1. The electric field operator
for a link ℓ lying on plaquettes 𝑝 and 𝑝′ at this truncation can be written as

𝐸ℓ
2
=

4
3

[
|⟲⟩𝑝 ⟨⟲|𝑝 + |⟲⟩𝑝′ ⟨⟲|𝑝′ + (|⟲⟩ ↔ |⟳⟩)

]
, (10)

where we have used the full expression of the Casimir of the fundamental representation 𝐶 𝑓 =

(𝑁2
𝑐 − 1)/(2𝑁𝑐) = 4/3. The plaquette operator at position 𝑝 is given by

□̂𝑝 =𝑃̂0, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂

×
(
|⟲⟩𝑝 ⟨0|𝑝 + |⟳⟩𝑝 ⟨⟲|𝑝 + |0⟩𝑝 ⟨⟳|𝑝

)
, (11)

where 𝑃̂0, 𝑝 = |0⟩𝑝 ⟨0|𝑝 and 𝑝 ± 𝑥 (𝑝 ± 𝑦̂) denotes the plaquette one position away in the 𝑥 (𝑦)
direction.

This Hamiltonian has a charge conjugation (C) symmetry that causes states with the anti-
symmetric combination 1√

2
( |⟲⟩ − |⟳⟩) anywhere on the lattice to decouple from the rest of the

Hilbert space. This decoupling can be seen by repeated applications of the plaquette operators to
the electric vacuum. Explicitly, we have

□̂𝑝 |0⟩ = |⟲⟩ + |⟳⟩

□̂𝑝

1
√

2
( |⟲⟩ + |⟳⟩) =

√
2 |0⟩ + 1

√
2
( |⟲⟩ + |⟳⟩) , (12)

so the state 1√
2
( |⟲⟩ − |⟳⟩) is never coupled to the rest of the Hilbert space. One can therefore

perform separate simulations for the C even and odd sector. By assigning |1⟩ = 1√
2
( |⟲⟩ ± |⟳⟩),

the C (anti)symmetric subspace can be described by assigning a qubit to each plaquette instead of
a qutrit. As already mentioned, physical states have the constraint that neighboring qubits cannot
both be in the |1⟩ state. With this encoding, the Hamiltonian for the C even sector is given by

𝐻̂ =
∑︁
𝑝

(
8
3
𝑔2 − 1

2𝑔2

)
𝑃̂1, 𝑝

− 1
𝑔2
√

2
𝑃̂0, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂ 𝑋̂𝑝 , (13)

where 𝑃̂1, 𝑝 = |1⟩𝑝 ⟨1|𝑝 and 𝑋̂𝑝 is the Pauli X operator acting on the qubit at plaquette 𝑝. Note that
the coefficient of 1

2𝑔2 multiplying 𝑃̂1, 𝑝 is a somewhat unique feature of 𝑆𝑈 (3) as only in 𝑆𝑈 (3)
will two applications of the plaquette operator to the vacuum state produce the anti-fundamental
representation.

3.2 Subleading in 1/𝑁𝑐

To obtain a more accurate description of finite 𝑁𝑐 gauge theories, one needs to go beyond
leading order in the large 𝑁𝑐 expansion. As discussed before, at order 1/𝑁𝑐 terms in the plaquette
operator that extend loops to neighboring plaquettes must be included. If the electric truncation
is kept at 𝑝 + 𝑞 ≤ 1, the theory at this truncation can once again be represented using a qutrit per

6
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Figure 4: Calculation of 1
𝑇

∫ 𝑇

0 𝑑𝑡 ⟨𝜓(𝑡) | 𝐻̂𝐸 |𝜓(𝑡)⟩ on a 4 × 1 lattice with periodic boundary conditions and
𝑔 = 1. The blue line shows the simulation for a SU(3) lattice gauge theory truncated at 𝑝 + 𝑞 ≤ 1, using
the formalism introduced in Ref [13]. The purple line shows the time evolution computed with the large 𝑁𝑐

truncated Hamiltonian in Eq. (13). The green line shows the time evolution with the 1/𝑁𝑐 corrections from
Eq. (14). The lines underneath show the ratio of the large 𝑁𝑐 electric energy to the SU(3) electric energy.

plaquette. However, now neighboring qutrits in the states |⟲⟩ |⟲⟩ or |⟳⟩ |⟳⟩ will be interpreted
as having their shared link in the 1 irrep. At this truncation, it is also possible to project into the 𝐶
even sector, and use a single qubit per plaquette. In this basis, a region of qubits in the |1⟩ state is
interpreted as having a loop of electric flux in an even superposition of 3 and 3̄ flowing around the
boundary of the region. With this basis, the Hamiltonian is given by

𝐻̂1/𝑁 =
∑︁
𝑝

8
3
𝑔2𝑃̂1, 𝑝 −

4
3
𝑔2𝑃̂1, 𝑝

(
𝑃̂1, 𝑝+𝑥̂ + 𝑃̂1, 𝑝− 𝑥̂ + 𝑃̂1, 𝑝+𝑦̂ + 𝑃̂1, 𝑝− 𝑦̂

)
− 1
𝑔2
√

2
𝑃̂0, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂ 𝑋̂𝑝 −

1
2𝑔2 𝑃̂0, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂ 𝑃̂1, 𝑝

− 1
6𝑔2 𝑋̂𝑝

(
𝑃̂1, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂ + 𝑃̂0, 𝑝+𝑥̂ 𝑃̂1, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂

)
− 1

6𝑔2 𝑋̂𝑝

(
𝑃̂0, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂1, 𝑝+𝑦̂ 𝑃̂0, 𝑝− 𝑦̂ + 𝑃̂0, 𝑝+𝑥̂ 𝑃̂0, 𝑝− 𝑥̂ 𝑃̂0, 𝑝+𝑦̂ 𝑃̂1, 𝑝− 𝑦̂

)
. (14)

To probe the effects of large 𝑁𝑐 truncations, the electric vacuum was evolved in time on a 4 × 1
lattice with PBC. Fig. 4 shows the evolution of 1

𝑇

∫ 𝑇

0 𝑑𝑡 ⟨𝜓(𝑡) | 𝐻̂𝐸 |𝜓(𝑡)⟩ as a function of 𝑇 for a
SU(3) LGT truncated at 𝑝 + 𝑞 ≤ 1. At long times, this observable is expected to equilibrate to
a thermal value determined by the initial state’s energy. As Fig. 4 shows, the relative error from
the large 𝑁𝑐 expansion at leading order is roughly 20% which should be expected from expanding
in 1

𝑁𝑐
with 𝑁𝑐 = 3. Including the 1/𝑁𝑐 corrections gives modest improvements. Note that the

improvements are not as large as one would expect because the full simulation includes vertices
with three incoming 3 irreps which in the large 𝑁𝑐 approach only show up when higher irrep states
are included.
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4. Summary

In this work, large 𝑁𝑐 expansions have been combined with the Hamiltonian formulation of
lattice gauge theories to reduce the resources required to map the theory onto a quantum computer.
The lowest-lying truncations require only a single qubit per plaquette. Remarkably, the lowest-lying
truncation takes the form of a 𝑃𝑋𝑃 model which is known to display quantum scarring [45–49].
This suggests similar phenomena may also occur in 𝑆𝑈 (3) gauge theory. This model is also a limit
of the Ising model with transverse and longitudinal fields which displays confinement [50–52]. This
suggests that connecting confinement in the Ising model to the physics of large 𝑁𝑐 Yang-Mills may
be possible. It is expected that the formalism introduced here can be extended to higher spacial
dimensions and include matter. The simplifications obtained by truncating in powers of 1/𝑁𝑐 may
enable near-term quantum simulations of physically relevant phenomena such as inelastic scattering
or jet fragmentation in lattice QCD.
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