
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
0
5

Adjoint chromoelectric correlators for heavy
quarkonium diffusion

Julian Mayer-Steudte𝑎,𝑏,∗

𝑎Technical University of Munich, TUM School of Natural Sciences, Physics Department,
James-Franck-Strasse 1, 85748 Garching, Germany

𝑏Munich Data Science Institute, Technische Universität München,
Walther-von-Dyck-Strasse 10, 85748 Garching, Germany

E-mail: julian.mayer-steudte@tum.de

We here measure, for the first time, adjoint chromoelectric correlators at finite temperatures that
encode the diffusion of quarkonium in the medium. Understanding the dynamics of quarkonium
in the QGP plays an essential role in understanding quarkonium suppression and the QGP in
general. We perform SU(3) gauge theory calculations and use gradient flow to improve the
signal-to-noise ratio and chromoelectric field discretizations. The continuum limit and the zero-
flow-time extrapolation are performed, and the final result is compared with perturbative results.
We observe that the correlators at a high temperature are well described by the perturbative
form; furthermore, we observe multiplicative scaling of the adjoint correlators with respect to the
fundamental correlator describing heavy quark diffusion.
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1. Introduction

Quantum chromodynamics (QCD) is the theory that describes the strong force mediated through
gluons between three families of quarks with increasing mass. Confinement is a distinguished
property of QCD, which describes bound states like protons and nuclei, as well as the bound state
of two heavy quarks known as quarkonium. However, there is a phase transition to a deconfinement
phase called quark-gluon plasma (QGP) at higher temperatures. Understanding the QGP is crucial
to achieving a better understanding of the early universe and the dynamics of heavy ion collisions.
Studying quarkonium as a probe of the QGP has been proposed theoretically in [1], and experimental
programs have emerged - see Refs. [2–4].

A direct approach to QCD to describe quarkonium dynamics is unfeasible, and developing
an effective field (EFT) approach is more appropriate since it has a distinct scale hierarchy: the
heavy quark mass 𝑀 , the relative momentum 𝑀𝑣, and the binding energy, with 𝑣 being the heavy
quark velocity inside the quarkonium [5, 6]. Integrating out the scale 𝑀 leads to the heavy quark
effective theory (HQET), or non-relativistic QCD (NRQCD) [7, 8], respectively. Integrating out
the momentum transfer 𝑀𝑣 gives potential NRQCD (pNRQCD). A pNRQCD description can be
extended to finite temperature cases using an open quantum system approach based on Lindblad
equations [9, 10].

Refs. [11–13] propose studying the diffusion of a heavy quark. The momentum diffusion
coefficient 𝜅 is encoded in the infrared limit of the spectral function of a chromoelectric correlator
in the leading order in the heavy quark mass expansion. The first-order correction contribution is
connected to a chromomagnetic correlator. The leading contribution to 𝜅 is determined in quenched
theory in [14–16], in [17] the gradient flow method [18–20] was for the first time employed to
improve the chromoelectric field non-perturbatively. In our previous study [21], we computed the
next order correction from the chromomagnetic correlator utilizing the gradient flow method. The
first steps towards computations with 2+1 dynamical fermions were performed in [22].

As obtained from a pNRQCD description, the quarkonium diffusion coefficients, which enter
the Lindblad equations, are encoded in chromoelectric correlators connected by adjoint Wilson
lines. Although these correlators and transport coefficients are of high importance for the study of
quarkonium in QGP and as input for the quarkonium production in heavy ion collisions [9, 10, 23–
27], they have not yet been calculated non-perturbatively on the lattice at finite temperatures. We
therefore aim to compute and present the results of adjoint chromoelectric correlators on the lattice
by utilizing the gradient flow algorithm in quenched theory.

2. Adjoint chromoelectric correlators

We construct three distinguishable correlators, where chromoelectric fields are attached to a
Wilson line in the adjoint representation:

𝐺𝐸 (𝜏) = −1
3

3∑︁
𝑖=1

⟨𝐸𝑖,𝑎 (𝜏)𝑈adj
𝑎𝑏

(𝜏, 0)𝐸𝑖,𝑏 (0)⟩, (1)

𝐺oct
𝐸 (𝜏) = − 1

3⟨𝑙8⟩

3∑︁
𝑖=1

⟨𝑈adj
𝑒𝑎 (1/𝑇, 𝜏)𝑑𝑎𝑏𝑐𝐸𝑖,𝑐 (𝜏)𝑈adj

𝑏𝑑
(𝜏, 0)𝑑𝑑𝑒 𝑓 𝐸𝑖, 𝑓 (0)⟩, (2)
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𝐺
sym
𝐸

(𝜏) = 1
3⟨𝑙8⟩

3∑︁
𝑖=1

⟨𝑈adj
𝑒𝑎 (1/𝑇, 𝜏) 𝑓𝑎𝑏𝑐𝐸𝑖,𝑐 (𝜏)𝑈adj

𝑏𝑑
(𝜏, 0) 𝑓𝑑𝑒 𝑓 𝐸𝑖, 𝑓 (0)⟩, (3)

where 𝐺sym
𝐸

can be seen as the adjoint version of the fundamental chromoelectric correlator

𝐺fund
𝐸 (𝜏) = −

3∑︁
𝑖=1

⟨ReTr[𝑈 (1/𝑇, 𝜏)𝐸𝑖 (𝜏)𝑈 (𝜏, 0)𝐸𝑖 (0)]⟩
3⟨𝑙3⟩

, (4)

which describes the diffusion of a heavy quark. 𝑈
adj
𝑎𝑏

(𝜏1, 𝜏2) is the temporal adjoint Wilson line
with adjoint color indices 𝑎, 𝑏 connecting timeslice 𝜏1 to 𝜏2 and is defined through the fundamental
temporal Wilson line 𝑈 (𝜏1, 𝜏2) as

𝑈
adj
𝑎𝑏

(𝜏1, 𝜏2) =
1
2

Tr[𝑈 (𝜏1, 𝜏2)𝜆𝑎𝑈 (𝜏2, 𝜏1)𝜆𝑏], (5)

where 𝜆𝑎 are the Gell-Mann matrices, 𝐸𝑖,𝑎 (𝜏) is the chromoelectric field with spatial component 𝑖
and color index 𝑎 and is defined through a field component in the fundamental representation 𝐸𝑖 as

𝐸𝑖,𝑎 = Tr[𝜆𝑎𝐸𝑖] . (6)

𝑑𝑎𝑏𝑐 and 𝑓𝑎𝑏𝑐 are, respectively, the symmetric and antisymmetric structure constants. 𝑙3 and 𝑙8 are
the non-trace-normalized Polyakov loop in fundamental and adjoint representation:

𝑙3 = Tr𝑈 (1/𝑇, 0) (7)

𝑙8 = Tr𝑈adj(1/𝑇, 0) =
8∑︁

𝑎=1
𝑈

adj
𝑎𝑎 (1/𝑇, 0) = |𝑙3 |2 − 1 (8)

with 𝑇 being the temperature. ⟨...⟩ denotes the path integral expectation value, i.e., the average over
the gauge field ensemble.

We employ the clover and a two-plaquette discretization of the field components, which we
label CLO and 2PL, respectively. The clover discretization of the field strength tensor 𝐹𝜇𝜈 is given
by the sum of four plaquettes

𝑎2𝐹𝜇𝜈 = − 𝑖

8
(𝑄𝜇𝜈 −𝑄𝜈𝜇), (9)

𝑄𝜇𝜈 = 𝑈𝜇,𝜈 +𝑈𝜈,−𝜇 +𝑈−𝜇,−𝜈 +𝑈−𝜈,𝜇 = 𝑄†
𝜈𝜇, (10)

with𝑈𝜇,𝜈 being the plaquette in the 𝜇− 𝜈-plane and 𝑎 the lattice spacing. The chromoelectric fields
are then given by 𝐸𝑖 = −𝐹𝑖,4. The 2PL discretization includes only two of the four plaquettes such
that the chromoelectric field components have no overlap of temporal link variables in the 𝐺𝐸 (𝜏)
correlator. For 𝐺oct

𝐸
(𝜏) and 𝐺

sym
𝐸

(𝜏), the explicit choice of the two plaquettes is symmetric as long
as the start and end of the correlator are set at the half of the temporal extend of the operator.

The finite-extension discretization of the chromoelectric field causes gluonic self-interactions,
which give logarithmic behaviors to the continuum limit and, hence, impedes the conducting of
reliable continuum limits. Therefore, we rely on the gradient flow method [18–20] to improve the
chromoelectric field insertions. In addition, it improves our signal-to-noise ratio and allows us

3
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to reach results at larger separations 𝜏. However, gradient flow introduces an additional fictitious
dimension called flow time 𝜏𝐹 in units of 𝑎2 to any observable, which eventually has to be removed
by a zero-flow-time extrapolation. In addition, the flow time acts as a regulator for any divergence.

We understand that 𝐺𝐸 (𝜏) is related to the singlet-octet transition, describing the transition
from a bound state to a scattering state (dissociation and recombination), and 𝐺oct

𝐸
(𝜏) to the octet-

octet transition, describing the transition from one scattering state to another. In addition, 𝐺sym
𝐸

(𝜏)
describes the diffusion of a heavy adjoint source.

An operator with a Wilson line of length 𝜏 comes with a mass divergence 𝛿𝑚 ∝ 1/
√

8𝜏𝐹 where
we explicitly observe the flow radius as the regulator of the divergence. The operators 𝐺oct

𝐸
(𝜏)

and 𝐺
sym
𝐸

(𝜏) are Polyakov loops with chromoelectric field insertions separated by 𝜏; hence, the
divergence is given by 𝑒−𝛿𝑚/𝑇 which is canceled by the Polyakov loop normalization, which carries
the same divergence. In contrast, 𝐺𝐸 (𝜏) has an explicit divergence as 𝑒−𝛿𝑚𝜏 . We renormalize
this operator by employing the renormalization condition from [28] with the renormalized and
trace-normalized Polyakov loop 𝐿𝑟

8 as

𝐿𝑟
8 =

1
8
𝑒𝛿𝑚(𝜏𝐹 )/𝑇 ⟨𝑙8(𝜏𝐹)⟩ (11)

where we include the flow-time dependence explicitly. We solve for the divergence and define the
renormalized observable as

𝐺𝑟
𝐸 (𝜏, 𝜏𝐹) = 𝑒𝛿𝑚(𝜏𝐹 )𝜏𝐺𝐸 (𝜏, 𝜏𝐹) (12)

=

( 8𝐿𝑟
8

⟨𝑙8(𝜏𝐹)⟩

) 𝜏𝑇
𝐺𝐸 (𝜏, 𝜏𝐹) (13)

where 𝐺𝐸 (𝜏, 𝜏𝐹) is the bare measurement on the lattice at finite flow time.
The three correlators𝐺𝑟

𝐸
,𝐺oct

𝐸
, and𝐺sym

𝐸
are divergence-free and hence we can perform reliable

continuum and zero-flow-time limits. In preparation, we apply a tree-level improvement as

𝐺
imp, 𝑝
𝐸

=
𝐺

𝑝

𝐸
(0, 𝜏𝑇) |LO

𝐺
𝑝

𝐸
(0, 𝜏𝑇) |lat

𝐿𝑂

𝐺
measured, 𝑝
𝐸

(𝜏𝐹 , 𝜏𝑇) (14)

with 𝑝 = {𝑟, oct, sym}, 𝐺 𝑝

𝐸
(0, 𝜏𝑇) |LO the tree-level result of the correlators in continuum, and

𝐺
𝑝

𝐸
(0, 𝜏𝑇) |lat

𝐿𝑂
the tree-level result in lattice perturbation theory. The equations are given by

𝐺fund
𝐸

(𝜏) |LO

𝑔2𝐶𝐹

≡ 𝑓 (𝜏) = 𝜋2𝑇4
[
cos2(𝜋𝜏𝑇)
sin4(𝜋𝜏𝑇)

+ 1
3 sin2(𝜋𝜏𝑇)

]
, (15)

𝐺𝐸 (𝜏) |LO

𝑔2𝐶𝐹

= 2𝑁 𝑓 (𝜏), (16)

𝐺oct
𝐸
(𝜏) |LO

𝑔2𝐶𝐹

= 2
𝑁2 − 4
𝑁2 − 1

𝑓 (𝜏), (17)

𝐺
sym
𝐸

(𝜏) |LO

𝑔2𝐶𝐹

=
𝐶𝐴

𝐶𝐹

𝑓 (𝜏), (18)

𝑓 (𝜏) |lat =
1

3𝑎4

∫ 𝜋

−𝜋

𝑑3𝑞

(2𝜋)3

cosh[𝑞𝑁𝜏 ( 1
2 − 𝜏𝑇)]

sinh(𝑞𝑁𝜏/2)
1

sinh(𝑞)


(
1 + �̃�2

4

) (
𝑞2 − (�̃�2 )2

8 + �̃�4

8

)
(CLO)(

𝑞2 + �̃�4−(�̃�2)2

8

)
(2PL)

.

(19)
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Table 1: The simulation parameters for the gradient flow lattices.

𝑇/𝑇𝑐 𝑁𝜏 𝑁s 𝛽 𝑁conf

1.5 16 48 6.872 1000
20 48 7.044 2002
24 48 7.192 2060
28 56 7.321 1882
34 68 7.483 1170

𝑇/𝑇𝑐 𝑁𝜏 𝑁s 𝛽 𝑁conf

10000 16 48 14.443 1000
20 48 14.635 1178
24 48 14.792 998
34 68 15.093 599
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τT1.5
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Figure 1: 𝐺𝑟
𝐸

and 𝐺oct
𝐸

with the 2PL operator, normalized with 𝑓 (𝜏), at a fixed flow time ratio at 𝑇 = 1.5𝑇𝑐
for all five lattice spacings.

with 𝑞 = 2 arcsin
(√︁

𝑞2/2
)
, 𝑞𝑛 =

∑3
𝑖=1 2𝑛 sin𝑛 (𝑞𝑖/2), 𝑁 = 3, 𝐶𝐹 = ((𝑁2 − 1)𝑇 𝑓 )/𝑁 , 𝑇 𝑓 = 1/2, and

𝐶𝐴 = 𝑁 . The continuum result can be found in [29].

3. Lattice results

We generate quenched SU(3) gauge field configurations at 𝑇 = 1.5𝑇𝑐 and 𝑇 = 104𝑇𝑐. We
use Wilson action with overrelaxation and heat bath algorithm to sample the configurations; the
simulation parameters are listed in Table 1, and the 𝛽-parameter was fine-tuned via the scale setting
in [30]. We use the publicly available MILC code. We pick the Symanzik action to solve the
gradient flow numerically [31, 32], where we vary the step-sizes with fixed step-sizes among an
ensemble.

Fig. 1 shows 𝐺𝑟
𝐸

and 𝐺oct
𝐸

at a given flow time ratio at 𝑇 = 1.5𝑇𝑐. 𝐺oct
𝐸

and 𝐺
sym
𝐸

are symmetric
around 𝜏𝑇 = 0.5 by construction; conversely, 𝐺𝐸 is not. In preparation for the continuum limit,
we interpolate the intermediate data points between the discrete 𝜏𝑇 separations with cubic splines.
Fig. 2 shows examples of the continuum limit for the 𝐺oct

𝐸
and 𝐺𝑟

𝐸
correlators. The continuum

extrapolation is performed as a linear fit in 1/𝑁2
𝜏 ∝ 𝑎2 since we use the Wilson action, which has

a leading O(𝑎2) discretization artifact. For 𝐺oct
𝐸

, we exclude the 𝑁𝜏 = 16 ensembles from the
continuum limit at 𝑇 = 1.5𝑇𝑐 to keep 𝜒2/dof close to 1, while for 𝑇 = 104𝑇𝑐 all ensembles are
included while delivering a good value for 𝜒2/dof.

In the next step, we perform the zero-flow-time limit by a linear in-flow-time extrapolation. We
have shown in [33] that for flow times with

√
8𝜏𝐹 > 𝑎 the gradient flow method renormalizes the

5
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Figure 2: Examples of the continuum limit of 𝐺𝑟
𝐸

and 𝐺oct
𝐸

with the 2PL operator at 𝑇 = 1.5𝑇𝑐. Dimmed
data points are excluded from the continuum limit.
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Figure 3: Examples of the zero-flow-time limit of 𝐺𝑟
𝐸

and 𝐺oct
𝐸

with the 2PL operator at 𝑇 = 1.5𝑇𝑐. Dimmed
data points are excluded from the zero-flow-time limit.

chromoelectric field effectively. From perturbative calculations at tree level [17] we know that the
correlator is stable up to flow times

√
8𝜏𝐹 < 𝜏/3. Therefore, we restrict our considered flow time

range to

𝑎 ≤
√︁

8𝜏𝐹 ≤ 𝜏

3
. (20)

Examples of the zero-flow-time limit for 𝐺𝑟
𝐸
(𝜏) and 𝐺oct

𝐸
(𝜏) are presented in Fig. 3. We identify

a linear flow-time behavior within the considered flow-time range and the error bands, where
we perform the zero-flow-time extrapolation. Fig. 4 shows the final result of the symmetrized
correlators (oct and sym) compared to the fundamental correlator. We observe that the adjoint
correlators are scaled versions of the fundamental ones with the scaling factors given by LO results
in Eqs. (17) and (18). For 𝐺oct

𝐸
, the scaling factor is given by 5/4, and for 𝐺sym

𝐸
it is the Casimir

scaling 𝐶𝐴/𝐶𝐹 . This observation simplifies an extraction of the heavy quark diffusion coefficient,
which is given as the infrared limit of the spectral function of the correlators. Due to the linear
scaling of the correlators, we expect 𝜅oct = (5/4)𝜅fund and 𝜅sym = (𝐶𝐴/𝐶𝐹)𝜅fund where 𝜅 represents
the diffusion coefficient.

The final result of 𝐺𝑟
𝐸
(𝜏) is shown in Fig. 5. We observe that it is not symmetric around

𝜏𝑇 = 0.5, where the asymmetry is stronger at 𝑇 = 1.5𝑇𝑐 than at 𝑇 = 104𝑇𝑐. We compare the
correlator from our computations using gradient flow with results from multilevel computations.
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Figure 4: Final result of the symmetrized correlators (oct and symm) normalized with Eq. (15). We compare
the result with the fundamental correlator scaled with the factor at LO given in Eqs. (16), (17), and (18).
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Figure 5: Final result of the non-symmetric correlator normalized with Eq. (15). We compare the result
with results from multilevel calculations.

For the multilevel computations, the chromoelectric fields are tadpole-improved, and the same
Wilson renormalization is applied as for the gradient flow approach. We now need a multiplicative
factor for the multilevel result to achieve a better agreement with the gradient flow results; the
factor is closer to 1 at high temperature. Apart from the multiplicative constant, the shapes of the
correlator from both approaches agree well. The lower 𝜏𝑇-dependence, the smaller asymmetry,
and the multiplicative factor closer to 1 for the normalized correlator at high temperature indicate
a convergence of the non-perturbative lattice results to perturbative results. Nevertheless, the
asymmetry requires a new approach to extract 𝜅non−sym since the established methods require a
symmetric correlator.

4. Conclusion

We used gradient flow to measure adjoint chromoelectric correlators on the lattice at finite
temperatures. We obtain two symmetric correlators, which are scaled versions of the symmetric
fundamental correlator, indicating for the diffusion coefficients 𝜅oct = (5/4)𝜅fund and 𝜅sym =

(𝐶𝐴/𝐶𝐹)𝜅fund. Additionally, we obtain a non-symmetric correlator and compare it with results from
multilevel computations. Nevertheless, the asymmetry requires the development of new methods

7
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to extract a reliable value for 𝜅non−sym. The final conclusion, error analysis, and comparison with
perturbation theory will be presented in a future study [34].
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