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A well-known challenge for the lattice community is calculating the spectral function from the
Euclidean correlator. We have approximated the spectral function and derived the mass and
thermal width of particles through the time derivatives of the lattice correlator moments. We
have focused on extracting the properties of bottomonium states, specifically Υ and 𝜒𝑏1 . We will
give an overview of the time-derivative moments approach and present results for the temperature
dependence of the mass and width of both bottomonium states. The zero temperature results
are consistent with experimental values, while results at higher temperatures are similar to those
obtained using other methods.
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Gen 𝑁 𝑓 𝜉 𝑎𝑠 (fm) 𝑎−1
𝜏 (Gev) 𝑚𝜋(MeV) 𝑁𝑠 𝐿𝑠(fm) 𝑇𝑐 (𝑀𝑒𝑉)

2L 2 + 1 3.45 0.112 6.08 240 32 3.58 167

Table 1: Lattice parameters for FASTSUM ensembles Generation 2L: Number of flavours 𝑁 𝑓 , spatial lattice
spacing 𝑎𝑠 , inverse temporal lattice spacing 𝑎−1

𝜏 , anisotrophy 𝜉 = 𝑎𝑠/𝑎𝜏 , pion mass 𝑚𝜋 , number of lattice
sites in the spatial direction 𝑁𝑠 , spatial extent 𝐿𝑠 , and the pseudocritical temperature 𝑇𝑐.

𝑁𝜏 128 64 56 48 40 36 32 28 24 20 16
T(MeV) 47 95 109 127 152 169 190 218 253 304 380

Table 2: Temperature corresponding to each 𝑁𝜏 for the Gen2L ensemble.

1. Introduction

Heavy quarkonium states are important probes for quark-gluon plasma (QGP) and can be
used as a thermometer for relativistic heavy-ion collisions [1]. It is therefore important to study
bottomonium states above the deconfining temperature. The b-quark has a mass that is larger than
other energy scales and can be approximated as a non-relativistic particle. Non-relativistic QCD
(NRQCD) is an effective field theory which approximates fully relativistic QCD by expanding the
Lagrangian in powers of the heavy quark velocity in the bottomonium rest frame, 𝑣 = |p|/𝑚𝑏 [2, 3].
The quark and anti-quark decouple and their propagators are then obtained as solutions to an initial
value problem. This results in a Euclidean correlator,

𝐺 (𝜏;𝑇) =
∫ ∞

𝜔𝑚𝑖𝑛

d𝜔
2𝜋
𝐾 (𝜏, 𝜔)𝜌(𝜔;𝑇) , (1)

with the NRQCD kernel is 𝐾 (𝜏, 𝜔) = 𝑒−𝜔𝜏 , and 𝑇 = (𝑎𝜏𝑁𝜏)−1. The challenge we now face is the
ill-posed problem of reconstructing the spectral function, 𝜌(𝜔), from the discrete lattice correlator
𝐺 (𝜏). We present a new method to study the spectra of heavy quarkonia. We analyse the correlator
without attempting to reconstruct the full spectral function by calculating the central moments of
the correlator after assuming the shape of the spectral function to be a sum of Gaussians. We use
this method to study the bottomonium spectrum at finite temperature.

2. Lattice Setup

We use FASTSUM’s "Generation 2L" ensembles with anisotropic lattice spacings, using a
Symanzik-improved anisotropic gauge action and an improved Wilson fermion action. Parameter
details are in Table 1. The temperature𝑇 = (𝑎𝜏𝑁𝜏)−1 is varied by changing the number of temporal
lattice sites 𝑁𝜏 see Table 2, and the pseudocritical temperature is 𝑇𝑐 = 167MeV. For details of the
ensembles see Refs [4, 5].

3. Time-derivative Moments

There are a number of methods that have been devised to reconstruct the spectral function
𝜌(𝜔;𝑇), from the correlator in Equation (1) [6]. Each approach comes with its own strengths and

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
0
3

NRQCD Bottomonium at non-zero temperature using time-derivative moments Rachel Horohan D’arcy

limitations. For a review and comparison of these methods see the upcoming paper [7]. Here we
present a new method to extract the mass and thermal width without reconstruction of the spectral
function. We approximate the spectral function, 𝜌(𝜔;𝑇) by a finite sum of Gaussian functions,
[8, 9],

𝜌(𝜔;𝑇) ∝
𝑁∑︁
𝑖=0

𝑒
− (𝜔−𝑚𝑖 )2

2Γ2
𝑖 , (2)

and use the first and second moments of the resulting correlator to calculate the mass,𝑀 , and thermal
width, Γ, of the bottomonium. Here we assume that the Gaussian associated with each state is cen-
tered at the mass, 𝑀𝑖 , of that state, and the thermal width, 2

√︁
2log(2)Γ𝑖 = FWHM𝑖 of each Gaussian.

Mass: The calculation of the mass, 𝑀 , is most clearly illustrated in the limit Γ2 → 0 where the
spectral function becomes a sum of delta fucntions,

𝜌(𝜔;𝑇) ∝
𝑁∑︁
𝑖=0

𝛿(𝜔 − 𝑚𝑖). (3)

Substituting (3) into (1) with the NRQCD kernel gives a correlator of the form:

𝐺 (𝜏;𝑇) ∝
𝑁∑︁
𝑖=0

∫
d𝜔
2𝜋
𝑒−𝜔𝜏𝛿(𝜔 − 𝑚𝑖) =

1
2𝜋

𝑁∑︁
𝑖=0

𝑒−𝑚𝑖 𝜏 . (4)

Now we consider the first central moment of the correlator and in the ground state limit. The mass
𝑀 of this state can be determined using

𝑚 = 𝑀𝐷 (𝜏) = − 𝐺′(𝜏;𝑇)
𝐺 (𝜏;𝑇) = −

∫
− d𝜔

2𝜋 𝜔𝑒
−𝜔𝜏𝛿𝜔,𝑚∫

d𝜔
2𝜋 𝑒

−𝜔𝜏𝛿𝜔,𝑚

, (5)

or equivalently,

𝑚 = 𝑀𝐿 (𝜏) =
𝜕 (log(𝐺 (𝜏;𝑇)))

𝜕𝜏
. (6)

Equations (5) and (6) are identical in the continuum but give different results for discrete derivatives,
and we have found (6) gives more reliable results. We use the difference between 𝑀𝐿 and 𝑀𝐷 to
estimate systematic errors.

Width: For the thermal width we substitute the Gaussian spectral function (2) into Equation (1)
with the NRQCD kernel, giving us a correlator,

𝐺 (𝜏;𝑇) ∝
𝑁∑︁
𝑖=0

∫
d𝜔
2𝜋
𝑒−𝜔𝜏𝑒

− (𝜔−𝑚)2
2Γ2 . (7)

The spectral width Γ2 can be equated to the variance of the Gaussian variable 𝜔, Γ2 = Var ⟨𝜔⟩.
We take a weighted average of 𝜔 and 𝜔2, Equation (10), where 𝑒−𝜔𝜏𝑒

− (𝜔−𝑚)2
2Γ2 is thought of as a

3
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"weighted spectral function".

Γ2 =
〈
𝜔2〉 − ⟨𝜔⟩2 (8)

=

∫
d𝜔
2𝜋 𝜔

2𝑒−𝜔𝜏𝑒
− (𝜔−𝑚)2

2Γ2∫
d𝜔
2𝜋 𝑒

−𝜔𝜏𝑒
− (𝜔−𝑚)2

2Γ2

−
©«
∫

d𝜔
2𝜋 𝜔𝑒

−𝜔𝜏𝑒
− (𝜔−𝑚)2

2Γ2∫
d𝜔
2𝜋 𝑒

−𝜔𝜏𝑒
− (𝜔−𝑚)2

2Γ2

ª®®¬
2

, (9)

and we can see that this is equal to

Γ2 = Γ2
𝐷 (𝜏) =𝐺

′′(𝜏;𝑇)
𝐺 (𝜏;𝑇) −

(
𝐺′(𝜏;𝑇)
𝐺 (𝜏;𝑇)

)2
, (10)

or equivalently,

Γ2 = Γ2
𝐿 (𝜏) =

𝜕2(log(𝐺 (𝜏;𝑇)))
𝜕𝜏2 . (11)

Similarly as for the mass, Equations (10) and (11) are identical in the continuum, but give different
results for discrete derivatives, and we have found that (11) gives more reliable results. We use the
difference between Γ𝐿 and Γ𝐷 as an estimate of systematic errors.

Fits: We now go beyond the single state approximation and fit each of 𝑀𝐿 (𝜏) and Γ2
𝐿
(𝜏) to an

appropriate function to get a value for 𝑀𝐿 and Γ2
𝐿

at each temperature. A spectral function, 𝜌(𝜔),
as a sum of Gaussians leads to a correlator, 𝐺 (𝜔), which is a sum of exponential functions. Each
Gaussian and therefore each exponential in the sum corresponds to distinct bound states.

𝜌(𝜔) ∝
𝑁∑︁
𝑖=0

𝐴𝑖𝑒
− (𝜔−𝑚𝑖 )2

2Γ2
𝑖 ⇒ 𝐺 (𝜏) =

𝑁∑︁
𝑖=0

𝐴𝑖𝑒
−𝑚𝑖 𝜏+Γ2

𝑖
𝜏2/2.

We focus on the ground state and assume it is well separated from the excited states and hence at
large 𝜏, exp(−Δ𝑚𝑖𝜏 + ΔΓ2

𝑖
𝜏2/2) becomes small, with Δ𝑚𝑖 = 𝑚𝑖 − 𝑚0 and ΔΓ2

𝑖
= Γ2

𝑖
− Γ2

0 . We
also assume ΔΓ2𝜏2 < Δ𝑀𝜏 on our finite lattice. Further we don’t see evidence of the ΔΓ2

𝑖
term

dominating in the data. With this assumption we are able to factorise the ground state out to get

𝐺 (𝜏) =𝑒−𝑚0𝜏+Γ2
0 𝜏

2/2

(
1 +

𝑁∑︁
𝑖=1

𝐴𝑖

𝐴0
𝑒−Δ𝑚𝑖 𝜏+ΔΓ2

𝑖
𝜏2/2

)
, (12)

log(𝐺 (𝜏)) = − 𝑚0𝜏 + Γ2
0𝜏

2/2 + log

(
1 +

𝑁∑︁
𝑖=1

𝐴𝑖

𝐴0
𝑒−Δ𝑚𝑖 𝜏+ΔΓ2

𝑖
𝜏2/2

)
, (13)

≈ − 𝑚0𝜏 + Γ2
0𝜏

2/2 +
𝑁∑︁
𝑖=1

𝐴𝑖

𝐴0
𝑒−Δ𝑚𝑖 𝜏+ΔΓ2

𝑖
𝜏2/2, (14)
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using that log(1 + 𝑥) ≈ 𝑥 for small 𝑥.

𝜕log(𝐺 (𝜏))
𝜕𝜏

=(−𝑚0 + Γ2
0𝜏) +

𝑁∑︁
𝑖=1

𝐴𝑖

𝐴0

(
−Δ𝑚𝑖 + ΔΓ2

𝑖 𝜏

)
𝑒−Δ𝑚𝑖 𝜏+ΔΓ2

𝑖
𝜏2/2, (15)

𝜕2log(𝐺 (𝜏))
𝜕𝜏2 =(Γ2

0) +
𝑁∑︁
𝑖=1

𝐴𝑖

𝐴0

((
−Δ𝑚𝑖 + ΔΓ2

𝑖 𝜏

)2
+ ΔΓ2

𝑖

)
𝑒−Δ𝑚𝑖 𝜏+ΔΓ2

𝑖
𝜏2/2. (16)

In the following analysis we will be assuming only a single excited state contributes, i.e., 𝑁 = 1.
Furthermore, when fitting the mass we take the narrow-width approximation Γ2𝜏 ≪ 𝑚0, giving the
fit functions

𝑀 (𝜏) =𝑚0 + 𝐴𝑒−Δ𝑚𝑖 𝜏 , (17)

Γ2(𝜏) =Γ2
0 + 𝐴𝑒−Δ𝑚𝑖 𝜏+ΔΓ2

𝑖
𝜏2/2. (18)

4. Results

In Figures 1 and 2 we show results for the bottomonium S-wave, Υ, and the P-wave, 𝜒𝑏1,
mass. We fit the mass to on exponential as in Equation (17). A fourth order finite difference
[10] was used for both the first and second order derivatives. 𝑀 (𝜏) has the expected behaviour
in that it is similar to that of the standard effective mass [11, 12]. For the Υ we clearly see a
plateau approaching a constant for temperatures below 150MeV. For the higher temperatures above
150MeV are approaching plateau but are still decreasing at the maximum value of 𝜏, Figure 1, with
a larger decrease for the higher temperatures indicating thermal effects. For the 𝜒𝑏1, 𝑀 (𝜏) is quite
noisy at large 𝜏, with some linear effects at large 𝜏 indicating the narrow width approximation may
not be as suited to the 𝜒𝑏1 as it is with the Υ.

Figure 2 shows the mass as a function of temperature where we have included the additive
NRQCD energy shift, which is 𝐸0 = 7463MeV for these ensembles, set by the Υ(1𝑆) mass. The
zero temperature results are in agreement with experiment:𝑀 (Υ) = 9455(10)MeV and 𝑀 (𝜒𝑏1) =
9965(79)MeV compared to the Particle Data Group values of 9460MeV and 9892MeV respectively
[13]. We see an increase in mass with increasing temperature for the Υ in agreement with some
previous studies by FASTSUM [14]. The apparent increase could be a kinematic effect due to the
short temporal range at high temperatures [15, 16]. This suggests that the ground state may not
be dominating at late times, which would lead to an overestimate of the ground state mass. To
disentange potential kinematic effects from genuine thermal effects we perform a zero temperature,
𝑇0, analysis where we take the first 𝑁𝜏 points of the zero temperature correlator, 𝑁𝜏 corresponding
to each temperature and repeat the analysis presented above. This analysis suggests that kinetic
effects cause the increse in mass as the 𝑇0 data does not experience any thermal effects. We also
see a negative mass shift from the 𝑇0 analysis, implying there is a decrease in the upsilon mass, as
seen in [16]. The 𝑇0 results are shown in red in Figure 2. The 𝜒𝑏1 is decreasing with increasing
temperature as we can see from the fits and the 𝑇0 analysis.

For the width we see in Figure 3 that the Υ width is consistent with zero at zero temperature,
has a plateau for the lower temperatures below 150MeV and is still decreasing for the higher
temperatures above 150MeV indicating thermal effects. We see similar behaviour for the 𝜒𝑏1
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Figure 1: Left: 𝑀𝐿 (𝜏) of the Υ at each temperature. Right: 𝑀𝐿 (𝜏) of the 𝜒𝑏1 at each temperature.
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Figure 2: Left: 𝑀𝐿 (blue) from the fit for the Υ at each temperature and the corresponding 𝑇0 (red) result.
Right: 𝑀𝐿 (blue) from the fit for the 𝜒𝑏1 at each temperature and the corresponding 𝑇0 (red) result.

although there is a lot of noise in the data at large 𝜏. We fit Γ2(𝜏) for each temperature to Equation
(18), shown in Figure 4. We see a clear increase in Γ for both the Υ and 𝜒𝑏1 as the temperature
increases. We also repeated the zero temperature the analysis on the width and found that we see
an increase in thermal width with temperature.

All errors were done using a bootstrap analysis. The systematic errors were calculated using
Equation (10) to find Γ and Equation (5) for the mass and (10) to find Γ. The systematic errors
were calculated using Equation (5) for the mass and (10) for the width, as shown in Figures 2 and 4
respectively. The systematics are under control at low temperature for theΥ, while the discrepancies
for the 𝜒𝑏1 need to be considered further.

5. Conclusions

We have presented a new method to finding the spectra of quarkonia that allows us to avoid the
inverse problem. The mass results are in agreement with experiment at zero temperature. We see
an increase of Γ with temperature and a decrease in 𝑀 with temperature. Without having done a
zero temperature analysis the data agrees with previous FASTSUM results that found a increase in
mass [11, 14]. However the zero temperature analysis suggests that the apparent increase is likely

6
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Figure 3: Left: Γ2
𝐿
(𝜏) of the Υ at each temperature. Right: Γ2

𝐿
(𝜏) of the 𝜒𝑏1 at each temperature.
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Figure 4: Left: Γ𝐿 (blue) and Γ𝐷 (green) from the fit for the Υ at each temperature and the corresponding
𝑇0 (red) result. Right: Γ𝐿 (blue) from the fit for the 𝜒𝑏1 at each temperature and the corresponding 𝑇0 (red)
result. Points offset for clarity

due to the limited number of data points at higher temperature since it also sees the increase which
can’t be attributed to thermal effects.

An outstanding question is if we should be taking the limit as Γ2 → 0 for the 𝜒𝑏1, or whether
the width is too large for this assumption to hold. For further study, we will consider fitting the
mass to Equation (15) and the width to Equation (16) for 𝑁 ≠ 1. A multi-exponential fit analysis
has been done in [17]. We will be repeating these results on new ensembles with twice the number
of temporal lattice sites for each temperature as this study. This will allow us to compare the effect
the number of temporal sites has on the method.
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