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We investigate the QCD Anderson transition by studying the low-lying eigenmodes of the overlap
operator in the background of gauge configurations with 2+1+1 quark flavors of twisted-mass
Wilson fermions. The mobility edge, below which eigenmodes are localized, is estimated by the
inflection point of the relative volume. The analysis of its temperature dependence suggests a
close relation of localization to chiral symmetry restoration. We update our previous work [1] by
including recent results on lower temperatures and switching to improved estimates of the lattice
spacing and pseudocritical temperature respectively pion mass. Contrary to the previous prediction,
our the mobility edge estimate does not vanish at the temperature of the chiral phase transition. We
discuss a possible scenario, supported by literature, for why this could be the case.
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1. Introduction

The term Anderson transition originates from condensed matter physics, where it describes the
metal-insulator transition in disordered solids [2, 3]. In the metal phase the low-lying eigenmodes of
the Hamiltonian are delocalized and give rise to conductivity, whereas above some critical disorder
strength all eigenmodes are localized making the conductivity vanish. The energy threshold, which
seperates localized and delocalized modes, is called mobility edge. In QCD, there is an analogous
transition, where however the low-lying eigenmodes of the Dirac operator are localized and the
higher are delocalized above some temperature. Below this temperature, all modes are delocalized
[4]. Thus, the temperature takes over the role of the disorder strength, which seems be related to the
Polyakov loop, since it was found that the eigenmodes tend to localize in the sinks of the Polyakov
loop [5]. As a consequence, the vanishing of the mobility edge coincides with the deconfining phase
transition in quenched QCD [6]. In QCD setups with dynamical fermions, it was also found that the
same occurs at the chiral transition [5, 7] and at the chiral phase transition temperature in the chiral
limit in our previous work [1]. Additionally, in Ref. [8], it was argued that in the chiral limit no
goldstone bosons exist if near-zero modes are localized. On top of that, the near-zero are directly
connected to chiral symmetry breaking as the produce the chiral condensate via the Banks-Casher
relation [9]. Summarizing all of this, studying the QCD Anderson transition might provide the
answer to the question whether and how chiral and deconfinement transition are related to each other.

This work includes recent results on lower temperatures of the most physical data set evaluated
in Ref. [1]. We compute the low-lying eigenmodes of the overlap operator

𝐷ov =
𝜌

𝑎
(1 + sgn𝐾) , (1)

which was introduced in Ref. [10] and implements chiral symmetry on the lattice by satisfying
the Ginsparg-Wilson relation proposed in Ref. [11]. 𝐾 represents the Wilson operator with a
negative mass term −𝜌, where parameter 𝜌 was to 1.4 in order to optimize locality, which was
found to be the optimal choice according to Ref. [12]. The overlap operator was implemented
using a rational approximation and the eigenmodes were computed with the Krylov-Schur method
of the SLEPC library [13]. As background we employ gauge configurations of the twisted mass
at finite temperature (tmfT) collaboration, which were generated with 𝑁f = 2 + 1 + 1 flavors (two
degenerate light, physical strange & charm quarks) twisted mass Wilson fermions at maximal twist
and the Iwasaki gauge action. Table 1 provides an overview of the computed eigenmodes with the
data to 𝑁t ∈ {14, 16, 18, 20, 24} being the recently produced results. Compared to [1], the lattice
spacing 𝑎 = 0.0619(18) fm and the pseudocritical temperature 𝑇pc = 171(6) MeV of the chiral
transition respectively pion mass 𝑚π = 225(7) MeV were updated according to the more recent
determinations in Ref. [14] and [15], which were taken from [16] and [17] in the past. As a result,
all three parameters became slightly larger and especially the estimate for 𝑇pc is improved due to the
determination by an asymmetric fit to the chiral susceptibility. The number of lattice sites in each
space direction amounts 𝑁s = 48, such that the lattice extent is given by 𝐿 = 2.97(9) fm.

As a means of estimating the effect of continuum extrapolations, we apply the stereographic
projection

𝜆′ :=
i Im𝜆

1 − 𝑎
2𝜌Re𝜆

(2)
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Set of ensembles 𝑁t 𝑇 / MeV 𝑇/𝑇pc 𝜆c / MeV # conf. modes
conf.

D210
𝑁s = 48

𝑎 = 0.0619(18) fm
𝑚π = 225(7) MeV
𝑇pc = 171(6) MeV

4 797(23) 4.66(23) 3091(90)(4)(2) 10 1000
6 531(15) 3.11(16) 1638(48)(9)(6) 10 700
8 398(12) 2.33(12) 971(28)(4)(1) 10 500
10 319(9) 1.86(9) 644(19)(8)(16) 10 400
12 266(8) 1.55(8) 452(13)(22)(11) 10 350
14 228(7) 1.33(7) 255(7)(5)(7) 10 300
16 199(6) 1.17(6) 151(4)(10)(2) 10 250
18 177(5) 1.04(5) 107(3)(8)(22) 10 225
20 159(5) 0.93(5) 86(3)(3)(5) 10 200
24 133(4) 0.78(4) 88(3)(5)(18) 6 175

Table 1: List of tmfT ensembles with numbers of configurations on which overlap eigenmodes were computed
and numbers of eigenmodes per configuration. Parameters and nomenclature adopted from Refs. [14] and
[15]. Due to excessive computational costs, the eigenmodes for the ensemble with 𝑁t = 24 suffer from low
statistics. The errors are denoted in the order (scale)(statistical)(systematic), where the total error of the
temperatures is given by the scale error only.

to the eigenvalues 𝜆, which are distributed on the Ginsparg-Wilson circle. We define the relative
volume an eigenmode occupies

𝑟 (𝜆) =
𝑃−1

2 (𝜆)
|Λ| ∈ [1/|Λ|, 1] (3)

as measure of localization, where the 𝑞-th order inverse participation ratio of an eigenmode 𝑣𝜆 to the
eigenvalue 𝜆 reads

𝑃𝑞 (𝜆) =
∑︁
𝑖∈Λ

(𝑣𝜆(𝑖)†𝑣𝜆(𝑖))𝑞 (4)

and |Λ| denotes the total number of lattice sites.
As a proxy for the mobility edge we employ the inflection point 𝜆c of the relative point volume,

which we extract as follows: In order to approximate a smooth function we average 𝜆 and 𝑟 (𝜆) over
small bins of size Δ𝜆. For better readability we therefore redefine 𝜆 := |𝜆′ | and 𝑟 (𝜆) := 𝑟 (𝜆) in the
following. We then fit the Taylor polynomial

𝑟 (𝜆) = 𝑟c + 𝑏 (𝜆 − 𝜆c) + 𝑐 (𝜆 − 𝜆c)3 + 𝑑 (𝜆 − 𝜆c)4 (5)

to the data and vary the fit interval [𝜆l, 𝜆r] and the binsize to obtain fits with 𝜒2/d.o.f. ≈ 1. The
results for 𝜆c, which is the main quantity of interest, are listed in Table 1 as well. As improvement to
[1], additionally the systematic error of 𝜆c was estimated by the deviation to the inflection point
of the second best fit. The same analysis can be done with respect to the Ginsparg-Wilson angle
instead of the stereographic projection but it was found out in the past that this just gives rise to
minor differences of the results. Since it is believed that the stereographic projection brings us closer
to the continuum limit, we only analyzed this variant here.
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2. Results

Figures 1 and 2 show the distributions of the (stereographically projected) overlap eigenvalues
and the bin-averaged relative eigenmode volumes for for each temperature. The mobility edge proxy
𝜆c is highlighted with a vertical red line in the distribution respectively a red circle in the relative
volume plots. As expected the near-zero density of eigenmodes vanishes in high temperature phase
according to the Banks-Casher relation

⟨𝜓𝜓⟩ = −π lim
𝜆→0

lim
𝑚→0

lim
𝑉→∞

𝜌(𝜆) , (6)

which connects the quark condensate to the spectral density near zero. Due to the crossover nature
of the chiral transition for non-vanishing the near-zero modes do not instantly disappear right above
𝑇pc but rapidly decrease.

In Ref. [1], the vanishing of the mobility edge is predicted to coincide with the chiral phase
transition temperature 𝑇c = 132+3

−6 MeV (from [18] and confirmed by [15]) in the chiral limit. In
contrast to the quadratic extrapolation including the new data points with 𝑁t ∈ {14, 16, 18} favors a
scaling fit of the form

𝜆c(𝑇) = 𝑏(𝑇 − 𝑇0)𝜈 , (7)

where 𝑇0 denotes the Anderson transition temperature and 𝜈 some critical exponent. The temperature
dependence of the 𝜆c together with the extrapolation is shown in Figure 3. The extrapolated zero
at 𝑇0 = 139(4) (5) MeV agrees within errors with the preceding extrapolation of [1] but is slightly
higher, which is for the most part explained by the slightly decreased updated lattice spacing. The
most recent data points with 𝑁t ∈ {20, 24} marked in red were however excluded from the fit due to
the strong deviation. Contrary to the fit prediction the mobility edge does not further decrease and
eventually vanish here. This seems like a contradiction to Ref. [8], where it was argued that in the
chiral limit no goldstone bosons exist if near-zero modes are localized. Assuming that 𝑇0 increases,
as it happens for 𝑇pc compared to 𝑇c, when chiral symmetry is broken explicitly, the lower bound of
localization should therefore be given by 𝑇c.

This brings into play a scenario that has already been speculated about in [1]. Even though the
relative eigenmode volume as defined in Eq. (3) is low, it might scale according to some effective
dimension when increasing the volume. In this case, the eigenmode would actually not be localized
but our choice of localization measure is not sensitive to that. Instead, the volume dependence has
to be studied, which was done for the case of quenched QCD in Ref. [19] and proceeding [20].
Indeed, a second mobility at 𝜆IR = 0 was observed for temperatures above 𝑇IR ∈ (200, 250) MeV
with the zero modes being delocalized. If one assumes that 𝜆IR = 0, in contrast to the decreasing 𝜆c,
rises when reducing the temperature, both mobility edges would hit and annihilate each other. This
speculation gets supported by the observation that 𝜆c remains constant within errors for temperatures
of approximately 𝑇pc and below. This is also roughly the temperature region where 𝜆c enters the
infrared part of the spectrum as visualized in Fig. 1. As a consequence, 𝑟 (𝜆) might be inappropriate
as measure of localization for these temperatures and also the extrapolation seems to be invalid when
chiral symmetry is explicitly broken by non-zero quark masses. However, it is still plausible that the
critical scaling according to Eq. (7) applies in a world without near-zero modes above the chiral
transition like in the chiral limit with the mobility edge vanishing at 𝑇c. Finally, also possible lattice
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Figure 1: Distributions of (stereographically projected) overlap eigenvalues for different temperatures. The
inflection points of the relative volumes (see Figure 2) are highlighted by vertical red lines, where the shaded
regions visualize the statistical together with the systematic error.
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Figure 2: Bin-averaged relative eigenmode volumes as measure of localization for different temperatures.
The inflection points are highlighted by red circles, where only the corresponding statistical error is shown.
The fit window [𝜆l, 𝜆r] is indicated by vertical red lines and noted together with the binsize Δ𝜆 in the boxes.
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Figure 3: Temperature dependence of the mobility edge as extracted from the bin-averaged relative eigenmode
volume. The zero 𝑇0, highlighted with the red circle, is estimated by extrapolations with (7). Since the scale
error is one-to-one correlated for all data points, just the statistical and systematic error is included for fitting.
The scale error of the final result 𝑇0 is however denoted in the first bracket and the total error is visualized by
the red bar. The critical exponent 𝜈 comes along with a statistical error only. The data points in red were
excluded from fit due to the strong deviation.

artifacts deserve further investigation, since the pion mass is still unphysically large and the volume
with 𝑚𝜋𝐿 ≈ 3.39 rather small compared to that.

The critical exponent 𝜈 = 1.24(2) significantly differs from the expected one of the three-
dimensional unitary Anderson model of 𝜈 ≈ 1.44 [4, 21]. There are several reasons why this could
be the case. First of all and most importantly, if scaling applies, one cannot expect that the scaling
window being that large. For instance, the scaling window of the chiral transition was found to be
approximately equal to the range 120 MeV < 𝑇 < 300 MeV [15]. Shrinking the fit window tends
to result in an increased 𝜈 but slightly worse 𝜒2/d.o.f.. Alternatively, one can try to incorporate
next-to-scaling corrections. However, these have to be modeled, since their analytical form is not
known. A naive approach, which results in a linear behavior for high temperatures as observed on
coarser lattices, leads to a larger 𝜈 but slightly worse 𝜒2/d.o.f. as well. Therefore, both approaches
indicate that the critical exponent is probably larger but are not the most reliable ones for the current
data situation. Furthermore, the data points for high temperatures have to be treated more carefully
due to the lower number of lattice sites 𝑁t in the temporal direction. Finally, as explained above,
it could be the case that true scaling only applies in the chiral limit and that non-vanishing quark
masses give rise to deviations from that.
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3. Outlook

In order to probe the existence of an infrared mobility edge, it is necessary to employ other
definitions of localization. For instance, the ratio 𝑃−1

2 (𝜆)/(𝑃−1
3 (𝜆))1/2 shows a dip at the mobility

edge in the SU(2) Higgs model at finite temperature [22]. Indeed, first investigations of this quantity
in our QCD setup show intimations of a double dip but however better statistic is required. As
discussed, especially the evaluation of different spatial volumes would be desirable in order to
determine the effective dimension of the eigenmodes. This would enable a more precise determination
of the mobility edge with our current definition of localization, namely by employing a finite-size
scaling analysis instead of using the inflection point as a proxy. However, this is currently not feasible
due to excessive computational costs.

Also the evaluation of ensembles with lower pion masses and at the same time larger 𝑚π𝐿. For
this purpose, it is planned to evaluate the twisted mass ensembles from Ref. [23] with a physical
pion mass and 𝑚π𝐿 ≈ 3.62 [24], which are based on the vacuum ensembles from Ref. [25]. Due to
the number of lattice sites, this comes along with high computational costs as well.

Therefore, also an accelaration of the computations is required. Very promising for this purpose
is the prior smoothing of the gauge configurations using gradient flow as proposed in Ref. [26], which
reduces ultraviolet fluctuations on the lattice. Doing so, one can perform the analysis for different
flow times and extrapolate the mobility edge to vanishing flow time afterwards. Furthermore,
optimizations on the numerical side like multigrid methods and polynomial preconditioning in order
implement the overlap operator in a more efficient way might be worthwile [27, 28].

Finally, it would be interesting to study the QCD Anderson transition in an external magnetic
field. It is known that in this case the chiral transition as well as the deconfinement temperature
decrease with increasing field strength [29, 30]. If the conjecture that the QCD Anderson transition
is connected to both, one would expect that its transition temperature decreases as well, hence, the
onset of eigenmode localization gets shifted to lower temperatures. Therefore, studying magnetic
fields would be a good way to qualitatively check that conjecture.
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