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We discuss a recently introduced strategy to study non-perturbatively thermal QCD up to tem-
peratures of the order of the electro-weak scale, combining step scaling techniques and shifted
boundary conditions. The former allow to renormalize the theory for a range of scales which spans
several orders of magnitude with a moderate computational cost. Shifted boundary conditions
remove the need for the zero temperature subtraction in the Equation of State. As a consequence,
the simulated lattices do not have to accommodate two very different scales, the pion mass and
the temperature, at the very same spacing. Effective field theory arguments guarantee that finite
volume effects can be kept under control safely. With this strategy the first computation of the
hadronic screening spectrum has been carried out over more than two orders of magnitude in
the temperature, from 𝑇 ∼ 1 GeV up to ∼ 160 GeV. This study is complemented with the first
quantitative computation of the baryonic screening mass at next-to-leading order in the three-
dimensional effective theory describing QCD at high temperatures. Both for the mesonic and
the baryonic screening masses, the known leading behaviour in the coupling constant is found
to be not sufficient to explain the non-perturbative data over the entire range of temperatures.
These findings shed further light on the limited applicability of the perturbative approach at finite
temperature, even at the electro-weak scale.
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1. Introduction

Quantum Chromodynamics (QCD) at very high temperatures plays a pivotal rôle in particle
and nuclear physics as well as in cosmology. At asymptotically high temperatures, thermal QCD
is described by a three-dimensional effective gauge theory, whose dynamics is non-perturbative
[1, 2]. The study of such an effective theory from a perturbative point of view is then limited by
the so-called infrared problem, which manifests itself when ultrasoft gluons enter into loops [3].
This implies that perturbation theory can predict the coefficients of the expansion in the strong
coupling constant 𝑔 only up to a finite order and, as a consequence, that the theory has to be
solved non-perturbatively even at very high temperatures. An important example is provided by
the Equation of State, where non-perturbative contributions start at 𝑂 (𝑔6) and are still relevant at
very high temperatures[4, 5]. These findings clearly point out that, in order to have a reliable and
satisfactory understanding of the dynamics of the high temperature regime of QCD, a fully non-
perturbative approach is essential up to temperatures which are, at least, of the order of magnitude
of electro-weak scale. The strategy that we outline here provides a solid framework to achieve such
a non-perturbative description. First introduced for the Yang-Mills theory in Ref. [6], and then
generalized to QCD in Ref. [7], this strategy allows to simulate the theory of strong interactions up
to very high temperatures from first principles with a moderate computational effort.

As a concrete application we report the results that we obtained in the calculation of the
hadronic screening masses, which were carried out in Refs. [7, 8], in presence of 𝑁 𝑓 = 3 massless
quarks in a temperature interval ranging from 𝑇 = 1 GeV up to ∼ 160 GeV. Those observables
probe the exponential fall-off of two-point correlation functions of hadronic interpolating operators
in the spatial directions and are the inverses of spatial correlation lengths, which characterize the
response of the plasma when hadrons are injected into it. Their 𝑂 (𝑔2) contribution is known since
a long time for the mesonic sector [9], and has been recently calculated for the baryonic one [10].
For this reason, beyond their intrinsic theoretical interest, they also provide a further check of the
reliability of perturbation theory up to very high temperatures.

2. Preliminaries on the effective theory

In QCD at very high temperatures field fluctuations at energies which are much larger than the
temperature decouple and the resulting theory is effectively three-dimensional with field content
given by zero Matsubara gauge modes only.

2.1 Gluonic sector

The gluonic sector of the effective theory contains gauge fields 𝐴
𝑘
, with 𝑘 = 1, 2, 3, living in

three spatial dimensions, whose dynamics is non-perturbative [3]. They are coupled to a massive
scalar field 𝐴0, which transforms under the adjoint representation of the gauge group. By taking
into account these degrees of freedom, the corresponding effective action, which is usually called
Electrostatic QCD (EQCD), reads [1, 2]

𝑆EQCD =

∫
d3𝑥

{
1
2

Tr
[
𝐹𝑖 𝑗𝐹𝑖 𝑗

]
+ Tr

[(
𝐷 𝑗𝐴0

) (
𝐷 𝑗𝐴0

)]
+ 𝑚2

E Tr
[
𝐴2

0
]}

+ . . . , (1)
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where the dots stand for higher-dimensional operators [11]. Here 𝑖, 𝑗 = 1, 2, 3 and [𝐷
𝑖
, 𝐷

𝑗
] =

−𝑖𝑔E𝐹𝑖 𝑗 with the covariant derivative defined as 𝐷
𝑖
= 𝜕

𝑖
− 𝑖𝑔E𝐴𝑖

. The matching coefficients 𝑚2
E

and 𝑔2
E parametrize the Lagrangian mass squared of the scalar field 𝐴0 and the three-dimensional

coupling constant respectively. For 𝑁 𝑓 = 3, at leading order in perturbation theory, in terms of the
QCD coupling 𝑔, they read 𝑚2

E = 3
2𝑔

2𝑇2 and 𝑔2
E = 𝑔2𝑇 respectively [12–14]. At asymptotically high

𝑇 , the coupling 𝑔 is small and three different energy scales develop so that

𝑔2
E

𝜋
≪ 𝑚E ≪ 𝜋𝑇 . (2)

If one is interested in processes at scales of 𝑂 (𝑔2
E), the scalar field 𝐴0 can be integrated out. The

action of the remaining effective theory, dubbed Magnetostatic QCD (MQCD), is given by

𝑆MQCD =
1
𝑔2

E

∫
𝑑3𝑥

{1
2

Tr
[
𝐹𝑖 𝑗𝐹𝑖 𝑗

] }
+ . . . (3)

This is a three-dimensional Yang–Mills theory, it has a non-perturbative dynamics and therefore it
needs to be solved non-perturbatively [3]. Being 𝑔2

E the only dimensionful scale of the theory, one
would expect all dimensionful quantities to be proportional to the appropriate power of 𝑔2

E times a
non-perturbative coefficient.

2.2 Fermionic sector

At variance of the gluonic fields, at high temperatures quarks are always heavy fields with
masses ∼ 𝜋𝑇 , due to fermionic Matsubara frequencies. Therefore, the dynamics of such fields is
described by a three-dimensional non-relativistic QCD (NRQCD) action, [15–17], which reads at
𝑂 (𝑔2

E/(𝜋𝑇)) for 𝑁f = 3 massless fermions in the lowest Matsubara sectors

𝑆NRQCD = 𝑖
∑︁

f =u,d,s

∫
d3𝑥

{
𝜒̄f (𝑥)

[
𝑀 − 𝑔E𝐴0 + 𝐷3 −

∇2
⊥

2𝜋𝑇

]
𝜒f (𝑥)

−𝜙f (𝑥)
[
𝑀 + 𝑔E𝐴0 + 𝐷3 −

∇2
⊥

2𝜋𝑇

]
𝜙f (𝑥)

}
+𝑂

(
𝑔2

E

𝜋𝑇

)
.

(4)

Here the low energy constant is 𝑀 = 𝜋𝑇
[
1 + 𝑔2/(6𝜋2)

]
[9] and 𝜒 and 𝜙 are two-component Weyl

spinors, whose expression in the lowest Matsubara sector reads

𝜓 𝑓 (𝑥0, 𝑥) =
√
𝑇𝑒𝑖 𝜋𝑇𝑥0

(
𝜒 𝑓 (𝑥)
𝜙 𝑓 (𝑥)

)
, (5)

where 𝜓 is the usual four dimensional fermion field and 𝑓 is a flavour index, see appendix A of Ref.
[10] for a further discussion. Therefore the QCD dynamics at high temperature whose field content
is given by fermion fields in the lowest fermionic Matsubara sector, which interact with soft (𝐴0)
and ultrasoft (𝐴𝑘) gauge modes only, is described by 𝑆QCD3 = 𝑆EQCD + 𝑆NRQCD.

3. Non-perturbative thermal QCD at very high temperatures

3.1 Renormalization and lines of constant physics

A hadronic scheme is not a convenient choice to renormalize QCD non-perturbatively when
considering a broad range of temperatures spanning several orders of magnitude. This would require

3
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to accommodate on a single lattice both the temperature and the hadronic scale which may differ by
orders of magnitude, making the numerical computation extremely challenging. A similar problem
is encountered when renormalizing QCD non-perturbatively, and it was solved many years ago by
introducing a step scaling technique [18, 19].

In order to solve this problem, we build on that knowledge by considering a non-perturbative
definition of the coupling constant in a finite volume, 𝑔̄2

SF(𝜇), which can be computed precisely on
the lattice for values of the renormalization scale 𝜇 which span several orders of magnitude. Making
a definite choice, in this section we use the definition based on the Schrödinger functional (SF) [20],
however, notice that, other possible choices are available. In particular, in our lattice setup we also
made use of the gradient flow (GF) definition of the running coupling [21–23], see appendix B of
Ref. [7]. Once 𝑔̄2

SF(𝜇) is known in the continuum limit for 𝜇 ∼ 𝑇 [22, 24], thermal QCD can be
renormalized by fixing the value of the running coupling constant at fixed lattice spacing 𝑎 to be

𝑔̄2
SF(𝑔

2
0, 𝑎𝜇) = 𝑔̄2

SF(𝜇) , 𝑎𝜇 ≪ 1 . (6)

This is the condition, together with the definition of the critical mass, see App. B of Ref. [7], that
fixes the so-called lines of constant physics, i.e. the dependence of the bare coupling constant 𝑔2

0
and of the quark mass on the lattice spacing, for values of 𝑎 at which the scale 𝜇 and therefore the
temperature 𝑇 can be easily accommodated. For a more complete discussion on how this technique
is implemented in practical lattice simulations we refer to appendix B of Ref. [7].

3.2 Shifted boundary conditions

The thermal theory is defined by requiring that the fields satisfy shifted boundary conditions in
the compact direction [25–27], while we set periodic boundary conditions in the spatial directions.
The former consist in shifting the fields by the spatial vector 𝐿0 𝝃 when crossing the boundary of
the compact direction, with the fermions having in addition the usual sign flip. For the gauge fields
they read

𝑈𝜇 (𝑥0 + 𝐿0, 𝒙) = 𝑈𝜇 (𝑥0, 𝒙 − 𝐿0𝝃) , 𝑈𝜇 (𝑥0, 𝒙 + 𝑘̂ 𝐿𝑘) = 𝑈𝜇 (𝑥0, 𝒙) , (7)

while those for the quark and the anti-quark fields are given by

𝜓(𝑥0 + 𝐿0, 𝒙) = −𝜓(𝑥0, 𝒙 − 𝐿0𝝃) , 𝜓(𝑥0, 𝒙 + 𝑘̂ 𝐿𝑘) = 𝜓(𝑥0, 𝒙) ,
𝜓̄(𝑥0 + 𝐿0, 𝒙) = −𝜓̄(𝑥0, 𝒙 − 𝐿0𝝃) , 𝜓̄(𝑥0, 𝒙 + 𝑘̂ 𝐿𝑘) = 𝜓̄(𝑥0, 𝒙) , (8)

where 𝐿0 and 𝐿𝑘 are the lattice extent in the 0 and 𝑘-directions respectively. In the thermodynamic
limit, a relativistic thermal field theory in the presence of shift 𝝃 is equivalent to the very same theory
with usual periodic (anti-periodic for fermions) boundary conditions but with a longer extension of

the compact direction by a factor
√︃

1 + 𝝃2 [27], i.e. the standard relation between the length and

the temperature is modified as 𝑇 = 1/(𝐿0

√︃
1 + 𝝃2). Shifted boundary conditions represent a very

efficient setup to tackle several problems that are otherwise very challenging both from the theoretical
and the numerical viewpoint. Some recent examples are provided by the SU(3) Yang-Mills theory
Equation of State which was obtained at the permille level up to very high temperatures [6, 28]
and more recently in 𝑁 𝑓 = 3 QCD with a novel computation of the renormalization constant of
the flavour-singlet local vector current [29]. The same setup is currently in use to carry out the

4
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first non-perturbative computation of the Equation of State at large temperatures in thermal QCD
[30, 31]. As a further remark, notice that the use of shifted boundary conditions is not crucial for the
numerical calculation presented in section 5, however we have chosen to use them with 𝝃 = (1, 0, 0)
so as to share the cost of generating the gauge configurations with that project. Moreover, the free
case computation of both the mesonic and the baryonic screening masses, reported in appendices F
of Ref. [7] and D of Ref. [8] respectively, indicates that the use of shifted boundary conditions with
𝝃 = (1, 0, 0) guarantees the lattice measurements to be affected by milder discretization errors.

3.3 Finite-volume effects

As we have seen in section 2, at asymptotically high temperatures, the only dimensionful
quantity is the three dimensional gauge coupling 𝑔2

E . This implies that the mass gap developed by
thermal QCD must be proportional to 𝑔2

E [32]. On the other hand, at intermediate temperatures,
provided that the temperature is sufficiently large with respect to ΛQCD, the mass gap of the theory
is always expected to be proportional to the temperature times an appropriate power of the coupling
constant [33]. As a consequence, finite-size effects are exponentially suppressed with 𝐿𝑇 times
a coefficient that tends to decrease logarithmically with the temperature, see Refs. [27, 34]. For
instance, by taking into account a generic spatial correlation function 𝐶O (𝑥3), see section 4, and by
defining the finite volume residue due to the compactification in the 1-direction as

I1(𝑥3, 𝐿) ≡
[
1 − lim

𝑥3→∞

]
𝐶O (𝑥3) (9)

by employing the transfer-matrix representation of such a correlation function, it is easy to see that,
by neglecting exponentially suppressed terms, the residue can be written, in the large 𝑥3 limit, as

I1(𝑥3, 𝐿)
𝑥3→∞∝ 𝑒−𝐿𝛾1 (𝐸𝑛+𝑖 𝜉1𝜔𝑛 ) (10)

where 𝛾1 and 𝜉1 are the Lorentz factor and the shift parameter due to shifted boundary conditions
respectively, see section 3.2, 𝜔𝑛 are fermionic or bosonic Matsubara frequencies, depending on the
spin quantum number of the interpolating operator O and 𝐸𝑛 is the energy of the lightest 1-particle
state with the correct quantum numbers. It is now crucial to notice that the 1-particle energies
are confined to the range 𝑀gap ≤ 𝐸𝑛 ≤ 𝜋𝑇 and the residue I1 is then exponentially suppressed as
𝑀gap𝐿 → ∞ or equivalently for 𝐿𝑇 → ∞. For this reason, in our lattice setup we always employ
large spatial extents, i.e. 𝐿/𝑎 = 288, so that 𝐿𝑇 ranges always from 20 to 50.

3.4 Restricting to the zero-topological sector

At high temperature, the topological charge distribution is expected to be highly peaked at zero.
For QCD with three light degenerate flavours of mass 𝑚, the dilute instanton gas approximation
predicts for the the topological susceptibility 𝜒 ∝ 𝑚3𝑇−𝑏 with 𝑏 ∼ 8. The analogous prediction
for the Yang–Mills theory has been verified explicitly on the lattice [35]. Similarly, computations
performed in QCD seem to confirm the 𝑇-dependence predicted by the semi-classical analysis
even though the systematics due to the introduction of dynamical fermions is still difficult to control
[36, 37]. As a result, already at low temperatures, namely at𝑇 ∼ 1 GeV, the probability to encounter
a configuration with non-zero topology in volumes large enough to keep finite volume effects under
control is expected to be several orders of magnitude smaller than the permille or so. For these
reasons, we can safely restrict our calculations to the sector with zero topology.

5
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4. Correlation functions and screening masses

4.1 Mesonic interpolating operators

We are interested in flavour non-singlet fermionic bilinear operators of the form

O𝑎 (𝑥) = 𝜓̄(𝑥)ΓO 𝑇𝑎 𝜓(𝑥) , (11)

where ΓO =
{
11, 𝛾5, 𝛾𝜇, 𝛾𝜇𝛾5

}
characterizes the structure of the operators in the Dirac space, with

the latter named as usual as O =
{
𝑆, 𝑃,𝑉𝜇, 𝐴𝜇

}
, and we restrict ourselves to 𝜇 = 2. Here 𝑎 is

a flavour index which dictates the flavour structure of the corresponding states. The associated
two-point correlation function is

𝐶O (𝑥3) =
∫

𝑑𝑥0𝑑𝑥1𝑑𝑥2 ⟨O𝑎 (𝑥)O𝑎 (0)⟩ 𝑥3→∞∝ 𝑒−𝑚O 𝑥3 (12)

where 𝑚O is the corresponding screening mass and no summation over 𝑎 is understood.
At zero temperature, due to the breaking of chiral symmetry, these masses are all different.

However, when the temperature is large enough, in the chiral limit the vector and axial vector
screening masses are expected to become degenerate thanks to the restoration of the non-singlet
chiral symmetry. Moreover, as previously mentioned, at high temperature only the sector with zero
topology contributes de facto to the functional integral [38]. This leads to the degeneracy of the
non-singlet scalar and pseudoscalar screening masses as well. For a detailed investigation of such
a degeneracy pattern in the same range of temperatures, see Ref. [39].

4.1.1 Leading interacting contribution in the effective theory

The 𝑂 (𝑔2) contribution to the non-singlet mesonic screening masses has been computed in the
effective theory [9]. For three massless quarks, the expression reads

𝑚PT
O = 2𝜋𝑇

(
1 + 0.032739961 · 𝑔2

)
, (13)

where the first term comes from the free field theory, while the second one is generated by the
interactions. The next-to-leading order contribution in eq. (13) is independent of the specific
mesonic operator O and spin-dependent effects are expected to appear at 𝑂 (𝑔4) in the strong
coupling constant [40, 41].

4.2 Baryonic interpolating operators

The simplest fermionic operator with positive, or negative parity, which carries the nucleon
quantum numbers is1

𝑁 (𝑥) = 𝜖𝑎𝑏𝑐
(
𝑢𝑎𝑇 (𝑥)𝐶𝛾5𝑑

𝑏 (𝑥)
)
𝑑𝑐 (𝑥) , (14)

where the transposition acts on the spinor indices, latin letters refer to colour indices and 𝐶 = 𝑖𝛾0𝛾2

is the charge-conjugation matrix. The contraction with the totally anti-symmetric tensor 𝜖𝑎𝑏𝑐

guarantees the operator to be a colour singlet and gauge invariant.
1In order to avoid clutter we omit the free Dirac index on the rightmost 𝑑 quark.

6
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Notice that, at variance of the mesonic case, the corresponding two-point correlation function
cannot be projected to zero Matsubara frequency, since fermionic Matsubara frequencies are always
non-vanishing. Therefore, the screening correlator for a nucleon interpolating operator in the lowest
fermionic Matsubara sector reads

𝐶𝑁± (𝑥3) =
∫

𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑒
−𝑖 𝑥0+𝜉 𝑥1

𝐿0
𝛾2𝜋 〈

Tr
[
𝑃±𝑁 (𝑥)𝑁 (0)

]〉 𝑥3→∞∝ 𝑒−𝑚𝑁± 𝑥3 . (15)

Here 𝑃± = (1±𝛾3)/2 are projectors on positive (𝑁+) and negative (𝑁−) 𝑥3-parity states respectively.
For completeness, notice that the two-point function in eq. (15) is written in presence of shifted
periodic boundary conditions with 𝝃 = (𝜉, 0, 0) and the usual correlator with standard periodic
boundary conditions is easily recovered by setting 𝜉 = 0.

Similarly to the mesonic case, since at high temperatures chiral symmetry is not spontaneously
broken, the positive and the negative parity two-point correlation functions are equal up to a sign
in the chiral limit and, as a consequence, 𝑚𝑁+ = 𝑚𝑁− . This is at variance of the zero temperature
case, where, due to the spontaneous breaking of chiral symmetry, the nucleon and the 𝑁 (1535)
masses differ by several hundreds of MeV.

4.2.1 Leading interacting contribution in the effective theory

At variance of the mesonic case, so far in the literature, the only next-to-leading calculation on
the baryonic screening masses was just qualitative [42] and only very recently the first quantitative
computation of such a perturbative correction has been carried out [8], see appendix A for the
calculation. At 𝑂 (𝑔2) in the coupling constant, the baryonic screening masses, for three massless
quarks, read

𝑚PT
𝑁± = 3𝜋𝑇

(
1 + 0.046 · 𝑔2

)
, (16)

where the free theory value is 3𝜋𝑇 , while the 𝑂 (𝑔2) correction is due to interactions. Notice that,
at this order in perturbation theory, the positive and the negative parity partners are degenerate.

5. Numerical results

As a concrete application of the strategy outlined in section 3, in Refs [7, 8] we have performed
numerical simulations at 12 values of the temperature, 𝑇0, . . ., 𝑇11 covering the range from approx-
imately 1 GeV up to about 160 GeV. For the 9 highest ones, 𝑇0, . . ., 𝑇8, gluons are regularized
with the Wilson plaquette action, while for the 3 lowest temperatures, 𝑇9, 𝑇10 and 𝑇11, we adopt the
tree-level improved Lüscher-Weisz gauge action. The three massless flavours are always discretized
by the 𝑂 (𝑎)-improved Wilson–Dirac operator. In order to extrapolate the results to the continuum
limit, several lattice spacings are simulated at each temperature with the extension of the compact
dimension being 𝐿0/𝑎 = 4, 6, 8 or 10.

5.1 Mesonic screening masses

The mesonic screening masses have been computed with a few permille accuracy in the con-
tinuum limit. Within our statistical precision, the screening masses associated to the pseudoscalar

7
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Figure 1: Left: pseudoscalar (red) and vector (blue) screening masses versus 𝑔̂2. The bands represent
the best fits in eqs. (18) and (20), while the dashed line is the analytically known contribution. Right: the
vector-pseudoscalar mass difference, normalized to 2𝜋𝑇 , versus 𝑔̂4. Red bands represent the best fits of the
data as explained in the text.

and the scalar density are found to be degenerate and a similar discussion holds for the screening
masses of the vector and the axial current, as expected from chiral symmetry restoration. Given
the high accuracy of our non-perturbative data it has been possible to parameterize the temperature
dependence of the masses. In order to do that, we introduce the function 𝑔̂2(𝑇) defined as

1
𝑔̂2(𝑇)

≡ 9
8𝜋2 ln

2𝜋𝑇
ΛMS

+ 4
9𝜋2 ln

(
2 ln

2𝜋𝑇
ΛMS

)
, (17)

where ΛMS = 341 MeV is taken from Ref. [43]. It corresponds to the 2-loop definition of the strong
coupling constant in the MS scheme at the renormalization scale 𝜇 = 2𝜋𝑇 . For our purposes,
however, this is just a function of the temperature 𝑇 , dictated by the effective theory analysis, that
we use to analyze our results and which makes it easier to compare with the known perturbative
results.

5.1.1 Pseudoscalar mass

The temperature dependence of the pseudoscalar mass has been parameterized with a quartic
polynomial in 𝑔̂2 of the form

𝑚𝑃

2𝜋𝑇
= 𝑝0 + 𝑝2𝑔̂

2 + 𝑝3𝑔̂
3 + 𝑝4𝑔̂

4 . (18)

The leading and the quadratic coefficients have been found to be compatible with the free theory
value and the next-to-leading order correction, in eq. (13), respectively. Once 𝑝0 and 𝑝2 have
been fixed to their corresponding perturbative values, we obtain for the cubic and the quartic fit
parameters 𝑝3 = 0.0038(22) and 𝑝4 = −0.0161(17) with cov(𝑝3, 𝑝4)/[𝜎(𝑝3)𝜎(𝑝4)] = −1.0 with
an excellent 𝜒2/dof = 0.75. Such a polynomial is displayed, as a red band, together with the non-
perturbative data in the left panel of figure 1. It is clear that the quartic term is necessery to explain
the behaviour of the non-perturbative data in the entire range of temperature. In particular, at the
highest temperatures it contributes for about 50% of the total contribution induced by interactions,
while at low temperature it competes with the quadratic coefficient to bend down the pseudoscalar
mass.
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5.1.2 Vector mass

The mass difference between the vector and the pseudoscalar mass is due to spin-dependent
contributions, which, as we have anticipated, are expected to be 𝑂 (𝑔4) in the effective field theory.
By plotting our results as a function of 𝑔̂4, see right panel of figure 1, these turn out to lie on a
straight line with vanishing intercept in the entire range of temperature. We then parameterized the
temperature dependence with

(𝑚𝑉 − 𝑚𝑃)
2𝜋𝑇

= 𝑠4 𝑔̂
4 (19)

and we obtain 𝑠4 = 0.00704(14) with 𝜒2/dof = 0.79. It is remarkable that, even at the highest
temperatures which was simulated, the mass difference is clearly different from zero within the
statistical error, a fact which is not expected by the next-to-leading order estimate in eq. (13),
obtained in the effective field theory. Then the best parameterization for the vector screening mass
is given by

𝑚𝑉

2𝜋𝑇
= 𝑝0 + 𝑝2 𝑔̂

2 + 𝑝3 𝑔̂
3 + (𝑝4 + 𝑠4) 𝑔̂4 , (20)

with covariances cov(𝑝3, 𝑠4)/[𝜎(𝑝3)𝜎(𝑝4)] = 0.08 and cov(𝑝4, 𝑠4)/[𝜎(𝑝4)𝜎(𝑝4)] = −0.07. In
the vector channel the quartic contribution appearing in eq. (20) is responsible for about 15% of
the total contribution due to interaction at the electro-weak scale. Moreover, the quartic coefficient
for the vector screening mass is about 50% smaller than the corresponding coefficient for the
pseudoscalar channel. As a consequence, its contribution is not large enough to compete with the
quadratic coefficient and to bend down the value of the vector mass at low temperature. For a more
detailed analysis of the results we refer to section 7 of Ref. [7].

5.2 Baryonic screening masses

In contrast with the mesonic case, there are very few studies on the baryonic sector both on
the lattice [44–46] and in the three dimensional effective theory [42] and for what concerns lattice
calculations, no continuum limit extrapolation has ever been performed. In Ref. [8] we computed
the baryonic screening masses for the first time with continuum limit extrapolations and with a final
accuracy of a few permille from 1 GeV up to the electro-weak scale. As expected in a chirally
symmetric regime, the positive and the negative parity screening masses are found to be degenerate
in the entire range of temperatures. For this reason, in the following we only focus on the positive
parity mass 𝑚𝑁+ . The final results are shown in figure 2 as a function of 𝑔̂2(𝑇), see eq. (17).

As it is clear from the plot, the bulk of the baryonic screening mass is given by the free field
theory 3𝜋𝑇 plus a 4 − 8% positive contribution due to interaction. It is rather clear that from
𝑇 ∼ 160 GeV down to 𝑇 ∼ 5 GeV the perturbative expression is within half a percent with respect to
the non-perturbative data. The full set of data, however, shows a distinct negative curvature which
requires higher orders in the coupling constant to be parameterized. Similarly to the case of the
mesonic screening masses, the temperature dependence of the baryonic screening mass has been
parameterized with the ansatz

𝑚𝑁+

3𝜋𝑇
= 𝑏0 + 𝑏2 𝑔̂

2 + 𝑏3 𝑔̂
3 + 𝑏4 𝑔̂

4 . (21)
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Figure 2: Nucleon screening mass versus 𝑔̂2. The
band represent the best fit to eq. (21), while the dashed
line is the analytically known contribution in eq. (16).

𝑏0 and 𝑏2 turn out to be compatible with
the free-theory and the next-to-leading val-
ues in eq. (16) respectively. Then, by
enforcing those values and fitting again, we
obtain 𝑏3 = 0.026(4), 𝑏4 = −0.021(3)
and cov(𝑏3, 𝑏4)/[𝜎(𝑏3)𝜎(𝑏4)] = −0.99 with
𝜒2/dof = 0.64, which is the best parameter-
ization of our results over the entire range of
temperatures explored. Notice that, in general,
other parameterizations of the lattice data are
possible as well. These, however, result in the
disagreement between the fit parameter 𝑏2 and
the 1-loop perturbative correction in eq. (16).
For a more detailed discussion on such param-
eterizations we refer to section 5 of Ref. [8].

6. Conclusions

In these proceedings we outlined a recently proposed strategy to simulate QCD at very high
temperatures on the lattice with a moderate computational effort [7]. This strategy combines the
use of a non-perturbative definition of the running coupling in a finite volume to renormalize the
theory and the use of shifted boundary conditions, as well as the steady, theoretical and algorithmic
progress in simulation of gauge theory which makes it possible to simulate large lattices with a
moderate computational effort.

As a first application of this strategy, we computed both the mesonic [7] and the baryonic [8]
screening masses from 1 GeV up to the electro-weak scale. In both cases, we obtained results with a
few permille accuracy in the continuum limit. By scrutinizing in detail the temperature dependence
of these masses, we found that the next-to-leading perturbative calculation, both in the mesonic
and in the baryonic sector, is not sufficient to explain the behaviour of our data, since higher order
contributions in the running coupling remain relevant in the entire range of temperatures. The
results presented at this conference pave the way for a fully non-perturbative treatment of thermal
QCD up to the electro-weak scale and shed new light on the poor convergence of the perturbative
approach at very high temperatures.
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A. Baryonic thermal screening mass at NLO

In this appendix we sketch the perturbative calculation for the baryonic screening mass which
leads to the result in eq. (16). Such a calculation is performed in the effective field theory described
in section 2 in which quarks are treated as heavy, static fields interacting with soft and ultrasoft
gauge modes only. For a more detailed discussion see Ref. [10].

A.1 Equations of motion and quark propagators at next-to-leading order

Let us introduce the quark propagators for the 𝜒 and 𝜙 fields defined in eq. (5) as

𝑆𝜒 (𝑥) ≡ ⟨𝜒(𝑥) 𝜒̄(0)⟩ 𝑓 , 𝑆𝜙 (𝑥) ≡
〈
𝜙(𝑥)𝜙(0)

〉
𝑓
, (22)

where ⟨·⟩ 𝑓 refers to the fact that the expectation value is taken by integrating over the fermionic
variables in the path integral. From the effective action in eq. (4) it is straightforward to see that
such propagators satisfy the equations of motion〈[

𝑀 + 𝜕3 −
∇2
⊥

2𝜋𝑇

]
𝑆𝜒 (𝑥)

〉
= 𝑔E

〈[
𝑖𝐴3(𝑥) + 𝐴0(𝑥)

]
𝑆𝜒 (𝑥)

〉
− 𝑖11𝛿 (3) (𝑥) , (23)〈[

𝑀 + 𝜕3 −
∇2
⊥

2𝜋𝑇

]
𝑆𝜙 (𝑥)

〉
= 𝑔E

〈[
𝑖𝐴3(𝑥) − 𝐴0(𝑥)

]
𝑆𝜙 (𝑥)

〉
+ 𝑖11𝛿 (3) (𝑥) , (24)

where 11 stands for the identity in spinor and colour indices. Since the fermions have been integrated
out, the expectation values in eqs. (23) and (24) indicate the path integral over the gauge fields. Note
that these equations are valid also without integrating over the gauge fields, i.e. for a fixed gauge
field background, and that at this order the fermion propagators are diagonal in flavour and spin.
The equations of motion above can be solved perturbatively, at next-to-leading order, by writing

𝑆𝜒 (r, 𝑥3) = 𝑆
(0)
𝜒 (r, 𝑥3) + 𝑔E 𝑆

(1)
𝜒 (r, 𝑥3) +𝑂 (𝑔2

E) , (25)

and analogously for 𝑆
𝜙
(r, 𝑥3), where, by inserting these expressions in the equations of motion, at

leading order we obtain

𝑆
(0)
𝜒 (r, 𝑥3) = −𝑖𝜃 (𝑥3)11

∫
p
𝑒𝑖p·r 𝑒−𝑥3

(
𝑀+ p2

2𝜋𝑇

)
, 𝑆

(0)
𝜙

(r, 𝑥3) = − 𝑆
(0)
𝜒 (r, 𝑥3) , (26)

where
∫
p ≡

∫
d2p/(2𝜋)2. While at next-to-leading, the contributions to the quark propagators can

be written in terms of the leading contributions as

𝑆
(1)
𝜒 (r, 𝑥3) ≃

∫ 𝑥3

0
d𝑧3

[
𝑖𝐴3 + 𝐴0

] ( 𝑧3

𝑥3
r, 𝑧3

)
𝑆
(0)
𝜒 (r, 𝑥3) , (27)

𝑆
(1)
𝜙

(r, 𝑥3) ≃
∫ 𝑥3

0
d𝑧3

[
𝑖𝐴3 − 𝐴0

] ( 𝑧3

𝑥3
r, 𝑧3

)
𝑆
(0)
𝜙

(r, 𝑥3) , (28)

where we assumed heavy quarks in approximating the motion in the transverse directions.

11
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A.2 Baryonic correlators in the effective theory

In the effective field thoery, the nucleon interpolating operator in eq. (14) is readily obtained
by using the definitions in appendix A.2 of Ref. [10]. By assuming the baryon to propagate in
the positive 𝑥3-direction and by displacing each quark field in the transverse (𝑥1, 𝑥2)-direction, the
operator can be written in the three-dimensional non-relativistic effective theory as

𝑁 (r1, r2, r3; 𝑥3) → 𝜖𝑎𝑏𝑐
[
𝜒𝑎𝑇
𝑢 (r1, 𝑥3) 𝜎2 𝜙

𝑏
𝑑 (r2, 𝑥3) + 𝜙𝑎𝑇

𝑢 (r1, 𝑥3) 𝜎2 𝜒
𝑏
𝑑 (r2, 𝑥3)

]
𝜒𝑐
𝑑,𝛼 (r3, 𝑥3) ,

𝑁 (0) → 𝜖 𝑓 𝑒𝑔
[
𝜙
𝑓

𝑑
(0) 𝜎2 𝜒̄

𝑔𝑇
𝑢 (0) + 𝜒̄

𝑓

𝑑
(0) 𝜎2 𝜙

𝑔𝑇
𝑢 (0)

]
𝜒̄𝑒
𝑑,𝛼 (0) , (29)

where 𝛼 is a two-component spinor index. The nucleon two-point correlators (see eq. (15) with
𝜉 = 0) are defined in the effective theory as

C±(r1, r2, r3; 𝑥3) ≡
1
𝑇

Tr
〈
𝑁 (r1, r2, r3; 𝑥3)𝑁 (0)𝑃±

〉
(30)

= ∓𝑇2
〈

2𝑊 (r1, r2, r3; 𝑥3) + 3𝑊 (r2, r1, r3; 𝑥3)
〉
, (31)

where 𝑃± = (±𝑖/2)11 ↔ [𝛾0(11 ± 𝛾3)/2]11 and in the second line we exploited the antisymmetry
of the Levi-Civita symbol and we performed the integration over the fermionic fields. The Wick
contraction above is defined in terms of quark propagators as

𝑊 (r1, r2, r3; 𝑥3) ≡ −𝑖 𝜖𝑎𝑏𝑐𝜖𝑔 𝑓 𝑒 𝑆
𝑎𝑔
𝜒 (r1, 𝑥3) 𝑆

𝑏 𝑓

𝜙
(r2, 𝑥3)𝑆

𝑐𝑒
𝜒 (r3, 𝑥3) . (32)

Given that the two Wick contractions in (31) differ just by a permutation of coordinates, and that in
the end all coordinates are set equal (cf. eq. (30) and (15)), these yield the same baryonic screening
mass.

A.3 The Schrödinger equation

Once the expression of the Wick contraction in eq. (32) is known, its equation of motion at
order 𝑂 (𝑔2) in the strong coupling constant is readily worked out from the equations of motion in
eq. (23) and (24). By performing the gluon contractions and by taking the large separation limit
in the 𝑥3-direction, since we are interested in extracting the screening mass, the equation of motion
for a generic two-point correlation function associated with a baryonic interpolating operator reads[

𝜕3 −
3∑︁
𝑖=1

∇2
r𝑖

2𝜋𝑇
+𝑉 (r1, r2, r3)

]
⟨𝑊 (r1, r2, r3; 𝑥3)⟩ = 0 +𝑂 (𝑔3) , (33)

with

𝑉 (r1, r2, r3) ≡ 3𝑀 + 1
2

[
𝑉− (𝑟12) +𝑉+(𝑟13) +𝑉− (𝑟23)

]
, (34)

where r𝑖 𝑗 = |𝑟𝑖 − 𝑟 𝑗 | and we introduced the static potentials 𝑉±(𝑟), defined in Ref. [47], see Ref.
[10] for the details. Notice that eq. (33) is simply a (2+1)-dimensional Schrödinger equation and the
screening mass associated to the two-point correlation function in eq. (31) is obtained by extracting
the lowest energy eigenvalue of such a system.

The numerical solution of the Schrödinger equation has been carried out in two different and
independent ways, involving a two dimensional generalization of the hyperspherical harmonics
method, see appendix D of Ref. [10], and by discretizing the Hamiltonian on a mesh grid. Both
ways return the value, up to all digits shown, which is reported in eq. (16).
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