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of the Bielefeld Parma Collaboration, we have in recent years studied a multi-point Padé de-
scription of the net baryon number density computed as a function of imaginary baryon number
chemical potential. While our main emphasis has till now been on the determination of Lee-Yang
singularities, the method is per se a natural tool to analytically continue results. We report on the
status of our projects with this respect, comparing the Padé approach to analytic continuation to
another, new strategy, which is an application of the Cauchy integral formula in the sense of an
inverse problem.
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1. The lattice QCD sign problem and the complex 𝜇𝐵 plane

The sign problem is a necessary evil, unavoidable as soon as one integrates out the fermion
fields and expresses the partition function in terms of the gauge fields. This quotation [1] is probably
one of the most known incipit of publications on Lattice QCD. Moving to formulas, let’s look at
what happens when we want to study QCD at finite baryonic density. When a baryonic chemical
potential is in place, the Dirac operator satisfies

𝛾5 ( /𝐷 + 𝑚 + 𝜇𝐵 𝛾0) 𝛾5 = ( /𝐷 + 𝑚 − 𝜇∗𝐵 𝛾0)†

from which one gets
det( /𝐷 + 𝑚 + 𝜇𝐵 𝛾0) = det∗( /𝐷 + 𝑚 − 𝜇∗𝐵 𝛾0) (1)

which in turn implies that there are only two possibilities for the fermionic determinant to be real,
i.e.

• 𝜇𝐵 = 0

• 𝜇𝐵 = 𝑖 𝜇𝐵𝐼

For real values of the chemical potential, we end up with a complex weight in the path integral, so
that an interpretation in terms of probability fails and the foundation itself of an approach based on
Monte Carlo simulations fails as well. All in all, the situation is that depicted in Fig. 1, where we
plot a sketch of the complex 𝜇𝐵 plane: we have access to points on the imaginary axis (including,
of course, the origin), but the real axis (where we would like to compute) is terra incognita. The

Figure 1: The complex 𝜇𝐵 plane. Due to the sign problem, the real (𝑥, horizontal) axis is terra incognita.
Instead we can either compute on the imaginary (𝑦, vertical) axis or compute Tayor expansions at 𝜇𝐵 = 0. In
both case, an analytic continuation is due to get physical results.

two major solutions to escape the sign problem in lattice QCD are actually based on these two
possibilities: one can

• compute Taylor expansions at 𝜇𝐵 = 0 [2, 3];
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• compute at imaginary values 𝜇𝐵 = 𝑖 𝜇𝐵𝐼 [4, 5].

While the first method (the one based on Taylor expansions) is per se an analytic continutation from
zero chemical potential, in the second case one has to explicitly perform an analytic continuation
from the imaginary to the real axis in the complex chemical potential plane. In the following we
will be concerned with two methods which somehow aim at joining the two methods: a certain
form of Padè approximants (multi-point Padè) and an application of the Cauchy integral formula in
the form of an inverse problem.

This work is in the framework of research performed by the Bielefeld-Parma Collaboration:
we computed [6] cumulants of the net baryon number density, given as

𝜒𝐵
𝑛 (𝑇,𝑉, 𝜇𝐵) =

(
𝜕

𝜕𝜇̂𝐵

)𝑛 ln 𝑍 (𝑇,𝑉, 𝜇𝑙, 𝜇𝑠)
𝑉𝑇3 , (2)

with 𝜇̂𝐵 = 𝜇𝐵/𝑇 , the partition function being that of lattice QCD with 2 + 1 flavours in the HISQ
regulariztion, with physical value of the pion mass. The cumulants are computed at imaginary
values of the baryonic chemical potential and what we have been doing for some time is taking
results as inputs for obtaining multi-points Padè - i.e. rational - approximants 1. Having a rational
function is per se a direct way to obtain an analytic continuation, with a very simple recipe: simply
take it and compute it for real values of the chemical potential. After briefly discussing this, we
will move to yet another method, working again on the same data obtained in the Padè project. The
method is a conceptually very simple application of the Cauchy integral formula, which will take
us to an inverse problem. Once again, our aim is evaluating an observable (the number density) at
real values of the chemical potential taking as inputs computations on the imaginary axis.

2. Analytic continuation from multi-point Padè

A Padè approximant is nothing but a rational function 𝑅𝑚
𝑛 (𝑧)

𝑅𝑚
𝑛 (𝑧) = 𝑃𝑚(𝑧)

𝑄̃𝑛 (𝑧)
=

𝑃𝑚(𝑧)
1 +𝑄𝑛 (𝑧)

=

𝑚∑
𝑖=0

𝑐𝑖 𝑧
𝑖

1 +
𝑛∑
𝑗=1

𝑑 𝑗 𝑧
𝑗

. (3)

The 𝑚 and 𝑛 parametrizing the rational function are the degrees of the polynomials at numerator
and denominator respectively. Notice that the rational function depends essentially on 𝑛 + 𝑚 + 1
parameters. 2 The main idea is having this function as a smart proxy for another function 𝑓 (𝑧)
we are really interested in, for which we typically have a limited amount of information. 𝑅𝑚

𝑛 (𝑧) is
basically intended for

1Till now the main emphasis has been put on obtaining information on the phase diagram by studying the Lee-Yang
singularities, which are directly taken from the singularities of the rational function. In particular, the data we will
consider in the following are coming from those produced for the study in [7].

2In principle we should demand that there is no (common) zero of both numerator and denominator. In practice, we
cannot exclude the possibility of common zeros, and we will instead live with those, which are even a quite common
event.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
7
4

Analytic continuation from imaginary chemical potential Francesco Di Renzo

• interpolating 𝑓 (𝑧);

• extrapolating 𝑓 (𝑧) beyond the region in which we (at least partially) know it;

• hunting for the singularities of 𝑓 (𝑧).

While a polynomial approximation of 𝑓 (𝑧) could be in principle as good as a rational function with
respect to the first two points, (hints on) singularities are a piece of information which we would
miss with polynomials.
The by far more common form of Padè approximants is what is named single point Padè. We will
instead be concerned with multi-points Padè, which is natural to consider when we know a few
Taylor expansion coefficients of our function 𝑓 (𝑧) at different points 3, i.e.

. . . , 𝑓 (𝑧𝑘), 𝑓 ′(𝑧𝑘), . . . , 𝑓 (𝑠−1) (𝑧𝑘), . . . 𝑘 = 1 . . . 𝑁 (4)

Since we want 𝑅𝑚
𝑛 (𝑧) to be a good interpolation for 𝑓 (𝑧), it is natural to require that(

𝑑

𝑑𝑧

)𝑔
𝑅𝑚
𝑛 (𝑧) |𝑧=𝑧𝑘 = 𝑓 (𝑔) (𝑧𝑘) .

The somehow simplest case we can discuss is that of having 𝑛 + 𝑚 + 1 = 𝑁𝑠, in which case we can
solve a linear system

...

𝑃𝑚(𝑧𝑘) − 𝑓 (𝑧𝑘)𝑄𝑛 (𝑧𝑘) = 𝑓 (𝑧𝑘)
𝑃′
𝑚(𝑧𝑘) − 𝑓 ′(𝑧𝑘)𝑄𝑛 (𝑧𝑘) − 𝑓 (𝑧𝑘)𝑄′

𝑛 (𝑧𝑘) = 𝑓 ′(𝑧𝑘)
...

𝑃
(𝑠−1)
𝑚 (𝑧𝑘) − 𝑓 (𝑠−1) (𝑧𝑘)𝑄𝑛 (𝑧𝑘) − . . . − 𝑓 (𝑧𝑘)𝑄 (𝑠−1)

𝑛 (𝑧𝑘) = 𝑓 (𝑠−1) (𝑧𝑘)
...

(5)

The solution of this system of linear equations returns the coefficients of the polynomials 𝑃𝑚 and
𝑄𝑛. We could of course rely on different methods to get these coefficients, all somehow related
to the idea of minimizing a generalized 𝜒2. In practice, we could minimize the distance between
the input Taylor coefficients and the relevant rational function, weighted by the errors on the input
coefficients (the latter will in our case come from Monte Carlo measurements). Notice that this is
equivalent to solving an over-constrained system (𝑛 + 𝑚 + 1 < 𝑁𝑠) in a least squares sense (We
compared the latter method to the linear solver method in [6]).

Figure 2 is an example of how to get an analytic continuation from a multi-point Padè: we
present results for the number density. In simple words: we will look at the rational function on the
left hand side as an interpolation, on the left hand side as an extrapolation. In the left panel, we plot

3It is clear that the number of coefficients we know can be different at different points. For the sake of simplicity we
will however assume that 𝑓 (𝑠−1) is the highest order derivative which is known at each point (together with all derivatives
of degree 0 ≤ 𝑔 < 𝑠 − 1).
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the original results at imaginary chemical potential as red circles, together with the (interpolated)
Padè rational function, which is the blue line. Even a casual reader can notice that errors are hardly
visible for the original points and (in practice) negligible for the interpolation. A more careful
reader will notice a few small bumps in the rational function. These do not come as a surprise:
they are the result of a non-perfect cancellation of some zeros of numerator and denominator. In
practice, not all the zeros and poles of our rational function are genuine information accounting
for zeros and poles of the number density. In the right panel, we plot again our rational function,
this time computed for real values of the chemical potential (blue line). For comparison we also
plot (red dots) the sum of the Taylor series up to the eight order, as taken from ([8]). Beware!
Errorbars are not displayed (we are mainly concerned with trends). This has been obtained at a
given temperature (𝑇 ∼ 155𝑀𝑒𝑉) at fixed cutoff. Discrepancy beyond 𝜇̂𝐵 ∼ 1.5− 2.0 are not to be
really taken as much significant. The main point is that, while at imaginary chemical potential we
have little dependence of the rational function on the interval in which we take inputs for playing
the Padè game, on the real axis this dependence can be very much significant. All in all, we have
different behaviors beyond the 𝜇𝐵 ∼ 1.5 − 2.0 threshold, depending on the input we take for the
Padè approximant. We should nevertheless notice that in the same region, also errorbars on the sum
of the Taylor series are huge. We can summarize in this way: while (a) analytic continuation of a
(Padè) rational function is in principle trivial business, nevertheless (b) beyond a given threshold,
we have a large dependence of results on the input for the Padè machinery 4; also, (c) this threshold
is the same that separates the region in which the errors of Taylor series sums are small from that
in which they are large.

Figure 2: Multi-point Padè approximants for the number density at imaginary chemical potential (left; this
is an interpolation of data from Monte Carlo) and (analytically continued) at real chemical potential (right;
this is instead an extrapolation). In the right panel, we plot for comparison the sum of the Taylor expansion
up to the eight order (red dots). As explained in the text: the analytically continued results are stable up to
𝜇̂𝐵 ∼ 1.5 − 2.0.

4e.g., number of derivatives we take into account, imaginary chemical potential interval we select to start with, and
so on.
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Figure 1: See the Cauchy Integral formula, Eq. (1).

where ⇠k is the kth root of the nth Legendre polynomial Px(⇠); the weights Hk are defined by

Hk =
2

n Pn�1(⇠k) P 0
n(⇠k)

, (4)

and the error E is given by

E =
22n+1 (n!)4

(2n + 1)
⇥
(2n)!

⇤3 g(2n)(⇠0) , (5)

where the (2n)th derivative of the function is computed at some point ⇠0 2 (�1, 1).

For arbitrary finite integration interval [a, b] we make use of the transformation

x =
b + a

2
+

b � a

2
⇠ , (6)

so that
Z b

a

g(x) dx =
b � a

2

Z 1

�1

g(⇠) d⇠ . (7)

The quadrature nodes (i.e., the shifted zeros of the Legendre polynomial) become

xk =
b + a

2
+

b � a

2
⇠k , (8)

and the quadrature formula for the integral of the (lhs) of Eq. (7) is now given by (here for simplicity

we do not write the error)

Z b

a

g(x) dx '
nX

k=1

wk g(xk) , (9)

where wk = [(b � a)/2] Hk and the shifted zeros xk are written in Eq. (8).

We can directly apply Eq. (9) to the integral of the (rhs) of Eq. (2); by setting a = 0 and b = 2⇡,

we get

f(z0) =
1

2⇡

Z 2⇡

0

f(R ei✓) R ei✓

R ei✓ � z0
d✓ ' 1

2⇡

nX

k=1

wk
f(R ei✓k) R ei✓k

R ei✓k � z0
, (10)

2

With your favourite  QUADRATURE method … you can go numeric! 

with wk = ⇡Hk and ✓k = ⇡ (1 + ⇠k), k = 1, 2, . . . , n. Eq. (10) provides the set up for the numerical

determination of the Cauchy Integral formula through the Legendre-Gauss quadrature. From

several numerical exercises that we performed provide the indication that Eq. (10) works in practice

very well. For instance, if we consider the function f(z) = sin(z) we notice that the numerical

di↵erences between the estimated values obtained from the Legendre-Gauss quadrature and the

respective true values of the function are of the order, at least, of O(10�8), by using n = 40 , 50

quadrature nodes (and R = 1). Moreover, we are able to verify numerically that for the Laurent

coe�cient C�1 we get

C�1 =
1

2⇡i

I

C

f(z) dz =
1

2⇡i

I

C

sin(z) dz =

=
1

2⇡

Z 2⇡

0

f(R ei✓) R ei✓ d✓ ' 1

2⇡

nX

k=1

wk f(R ei✓k) R ei✓k ' O(10�15) , (11)

i.e., C�1 is zero (as it should) to a very good precision by employing a number of n = 50 quadrature

nodes and R = 1.

Furthermore, we have verified that the application of the Legendre-Gauss quadrature to functions

with pole singularities –of whatever number and order– is able to reproduce the correct results i.e.,

the results that come out thanks to the application of the residue theorem) to a high precision.

2. The inverse Cauchy problem

One of the interesting features of the Cauchy Integral formula is that the function f(z) appears

both in the left and the right hand side of the formula. Actually, this feature in combination with

the implementation of the Legendre-Gauss quadrature can provide a new way of achieving an

analytical continuation of the function f(z). This is accomplished by numerically resolving what

we will call as the inverse Cauchy problem.

Imagine that we are given a finite set of values {yi} , (i = 1, 2, . . . , n) that can be the values that

some function f(z) of unknown form takes at a respective set of points, namely {zi} (i = 1, 2, . . . , n),

on the complex z-plane. Let us assume for the moment that the (unknown) function f(z) is

analytical on and inside a circle that is centered in the origin and has radius R. Then for each of

the points zi we can apply the Legendre-Gauss quadrature formula of Eq. (10) and write:

yi =
1

2⇡

nX

k=1

wk
R ei✓k

R ei✓k � zi
f̂k , i = 1, 2, . . . , n , (12)

where, we remind the reader that, wk = ⇡Hk are the shifted weights and ✓k = ⇡ (1 + ⇠k) are the

shifted zeros of the nth Legendre polynomial whose zeros in the interval (�1 , 1) are denoted with

⇠k, k = 1, 2, . . . , n. It is easy to see that from the form of Eq. (12) for i = 1, 2, . . . , n we end up with

a system of n equations with n unknowns; the unknowns are the values of the (unknown) function,

namely {f̂k}, (k = 1, 2, . . . , n), on the quadrature points which lie on the circle of radius R. Hence,

once the set {f̂k} is known, one can use again the quadrature formula in the (rhs) of Eq. (12) at

any point z̃ that lie inside the circle to get the respective value for the (uknown) function. What

we have just described is a novel procedure of a numerically performed analytical continuation.

3
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In this note we study (a) the Gauss-Legendre quadrature method applied on the Cauchy Integral

formula and on the theorem of residues; (b) the inverse Cauchy problem aiming at the implementation

of numerical analytical continuation; (c) the two previous problems which under the light of a

modified Cauchy Integral formula are suitable for the implementation of di↵erent types of quadrature;

(d) a modified version of the Cauchy Integral formula with the help of which we show that it is

possible in case of an analytical function to get its values at points that stand beyond the contour

integral, as long as both the contour and the points of interest belong entirely to a simply connected

domain of analyticity of the function. In the Appendix we discuss the possibility of implementing a

generic type of quadrature to attack the inverse Cauchy problem.

1. Gauss-Legendre quadrature method implemented on the

Cauchy Integral formula

A fundamental theorem in complex analysis states that: if a function f(z), defined in a domain D

of the complex plane, is analytic everywhere within and on a simple closed contour C, taken in the

positive sense, and if z0 is any point interior to C (see Fig. 1), then the following equation holds:

f(z0) =
1

2⇡i

I

C

f(z)

z � z0
dz . (1)

Eq. (1) is the well known Cauchy Integral formula and says that for an analytic function f on a

contour C and in its interior, all values of f inside C are entirely determined by its values on the

contour.

If for the contour C we assume a circle of radius R centered in z = 0, the Cauchy Integral

formula can be equivalently written in the form

f(z0) =
1

2⇡

Z 2⇡

0

f(R ei✓) R ei✓

R ei✓ � z0
d✓ , (2)

where now the Cauchy Integral formula has been translated onto the real axis. The integral on the

(rhs) of Eq. (2) can be computed numerically with the use of some quadrature method. Being the

weight function a constant, the Legendre-Gauss quadratute is the appropriate method to employ.

Let us remind that for some function g(⇠) the standard formula for the Legendre-Gauss quadrature

takes the form [1]:

Z 1

�1

g(⇠) d⇠ =

nX

k=1

Hk g(⇠k) + E , (3)
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CAUCHY FORMULA

If you know the function on the contour, you can compute it at any point inside… sounds good!

What does ANALYTICITY mean? … (analytic functions aka olomorphic…)
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positive sense, and if z0 is any point interior to C (see Fig. 1), then the following equation holds:

f(z0) =
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f(z)

z � z0
dz . (1)

Eq. (1) is the well known Cauchy Integral formula and says that for an analytic function f on a

contour C and in its interior, all values of f inside C are entirely determined by its values on the

contour.

If for the contour C we assume a circle of radius R centered in z = 0, the Cauchy Integral

formula can be equivalently written in the form

f(z0) =
1

2⇡

Z 2⇡

0
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where now the Cauchy Integral formula has been translated onto the real axis. The integral on the

(rhs) of Eq. (2) can be computed numerically with the use of some quadrature method. Being the

weight function a constant, the Legendre-Gauss quadratute is the appropriate method to employ.

Let us remind that for some function g(⇠) the standard formula for the Legendre-Gauss quadrature

takes the form [1]:

Z 1
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nX

k=1

Hk g(⇠k) + E , (3)
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1

CAUCHY FORMULA

If you know the function on the contour, you can compute it at any point inside… sounds good!

… at any point, including the (only) ones we can compute (on the imaginary axis) in our case… 

What does ANALYTICITY mean? … (analytic functions aka olomorphic…)

Figure 3: Pictorial representation of our numerical interpretation of the Cauchy integral formula as an
inverse problem (see text).

3. Analytic continuation as an inverse problem (Cauchy integral formula)

Figure 3 is a cartoon of a fundamental result in analytic functions, i.e. the Cauchy (integral)
formula. We consider a function 𝑓 (𝑧), defined in a domain 𝐷 of the complex plane, analytic
everywhere within and on a simple closed contour 𝐶 (taken in the conventional positive sense), and
a generic point 𝑧0 inside 𝐶. We have that

𝑓 (𝑧0) =
1

2𝜋𝑖

∮
𝐶

𝑓 (𝑧)
𝑧 − 𝑧0

𝑑𝑧 (6)

(look at left panel of Figure 3). All in all, for a function 𝑓 which is analytic on a contour 𝐶 and
in its interior, all values of 𝑓 inside 𝐶 are entirely determined by its values on the contour. The
Cauchy integral formula can of course be applied to obtain values of 𝑓 (𝑧) on the imaginary axis
(now look at the central panel of Figure 3). If we consider the baryonic chemical potential complex
plane and we take for 𝑓 (𝑧) the number density, these are just values we can compute by Monte
Carlo simulations (there is no sign problem).
A convenient contour 𝐶 is a circle of radius 𝑅 centered in 𝑧 = 0, for which

𝑓 (𝑧0) =
1

2𝜋

∫ 2𝜋

0

𝑓 (𝑅 𝑒𝑖 𝜃 ) 𝑅 𝑒𝑖 𝜃

𝑅 𝑒𝑖 𝜃 − 𝑧0
𝑑𝜃 . (7)

In this way the Cauchy integral formula is expressed by an integral on the real axis, which can be
numerically computed in a convenient quadrature scheme (e.g. via Gauss-Legendre quadrature) 5

𝑓 (𝑧0) ≃
1

2𝜋

𝑛∑︁
𝑘=1

𝑤𝑘

𝑓 (𝑅 𝑒𝑖 𝜃𝑘 ) 𝑅 𝑒𝑖 𝜃𝑘

𝑅 𝑒𝑖 𝜃𝑘 − 𝑧0
. (8)

We now proceed to get an inverse problem out of this. As a result of e.g. Monte Carlo
computations, suppose we know a finite set of values of our function 𝑓 (𝑧), i.e. { 𝑓 (𝑧𝑖) ≡ 𝑦𝑖 | 𝑖 =
1, 2, . . . , 𝑛} at a respective set of points. It should be clear what we want to do: the 𝑧-plane will be

5We assume the reader is familiar with this result of numerical analysis: the computation of a real integral is traded
for the computation of the sum of products of values of the integrand computed at nodes times corresponding weights
(𝑤𝑘).
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the complex chemical potential plance, 𝑓 (𝑧) will be the number density and the points we want to
consider will be right on the imaginary axis (again, where Monte Carlo works). If we can assume
that our function 𝑓 (𝑧) is analytic on and inside a circle that is centered in the origin and has radius
𝑅, we can write the Gauss-Legendre quadrature formula of Eq. (8) as (notice that now we trust the
formula as exact!)

𝑦𝑖 =
1

2𝜋

𝑛∑︁
𝑘=1

𝑤𝑘

𝑅 𝑒𝑖 𝜃𝑘

𝑅 𝑒𝑖 𝜃𝑘 − 𝑧𝑖
𝑓𝑘 , 𝑖 = 1, 2, . . . , 𝑛 , (9)

with 𝑓𝑘 = 𝑓 (𝑅 𝑒𝑖 𝜃𝑘 ) (now look at the right panel of Figure 3). And here comes the inverse problem:
we consider the previous relation Eq. (9) as a linear system which we want to solve

𝐴 x = b ⇔ x = 𝐴−1 b . (10)

𝐴 is an 𝑛 × 𝑛 matrix with elements

𝐴𝑖𝑘 =
1

2𝜋
𝑤𝑘

𝑅 𝑒𝑖 𝜃𝑘

𝑅 𝑒𝑖 𝜃𝑘 − 𝑧𝑖

while 𝑏𝑖 = 𝑦𝑖 and 𝑥𝑘 = 𝑓𝑘 . By solving the linear system we get a number of values (at a number
of points) of our function on the contour 𝐶. This has come from our knowledge of values of 𝑓 (𝑧)
(at a number of points) in the interior of 𝐶 (namely, these are points on the imaginary axis). If we
think in terms of our original Eq. (6), this is an inverse problem.
Knowing the values of our function at the nodes which are relevant for the numerical version of the
Cauchy integral formula - Eq. (9) - the latter can be used in a direct (as opposed to inverse) way:
we will compute values of 𝑓 (𝑧) in other points in the interior of 𝐶, in particular on the real axis.
This is the analytic continuation we are interested in: we get unknown values on the real axis from
known values on the imaginary axis. Notice that there is a version of the integral Cauchy formula
for derivatives, namely for the 𝑛-th one

𝑓 (𝑛) (𝑧0) =
𝑛!
2𝜋𝑖

∮
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1 𝑑𝑧 . (11)

If we take 𝑧0 = 0, for a given parity we have pieces of information for free: indeed we can profit
from this.
In Figure 4 one can see this machinery at work. In the left panel, one can inspect the result of
the computation of values of the 𝑠𝑖𝑛 function on the real axis from the knowledge of values on
the imaginary axis. We would say we are doing somehow well, i.e. the method appears to work:
can we trust this? In other words: why could the method fail? A failure is likely because (a)
the numerical version (via Gauss-Legendre quadrature) of the Cauchy formula is not exact and (b)
the linear system is in general ill-conditioned. The combination of these two points can result in
a failure. Actually, at the time of the conference, if we inspected the obtained values of 𝑓𝑘 , they
looked like non-sense. Still, there was the success depicted in Fig. 4 and this could be explained
saying that we had an effective quadrature of our own. Performing other tests, we could indeed
provide some pieces of evidence for this interpretation.
In Fig. 4 (right panel) we also plot the method at work for lattice QCD, i.e. indeed we went for the
analytic continuation of results obtained on the imaginary axis for the number density. As in Fig.
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It looks like it works … but it should not!Reconstructing sin(x)

Notice the barrier (vertical line) you cannot overcome. For an analytic function, you will get zero if you do…Figure 4: Our inverse-problem-procedure at work. Left panel: taking inputs on the imaginary axis, we
compute values of the 𝑠𝑖𝑛 function on the real axis (the vertical line is the threshold we cannot trespass, i.e.
the radius 𝑅 in our computation). Right panel: application to lattice QCD (see text).

2, the blue solid line is the analytic continuation we got by our (multi-point) Padè approximant and
the red dots are the result of summing the Taylor series (up to order eight). Blue circles and black
diamonds are both obtained by the inverse-problem Cauchy formula. They differ from each other:
actually we took different inputs to solve the linear systems in Eq. (10). Errorbars are once again
not plotted. Notice that, at the time of the conference, we got just the same indetermination we
mentioned at the end of sec. 2: results changed if we changed the input for our procedure. Blue
circles results are very close to Padè results and indeed the input regions used for the two methods
were in these cases close to each other. This dependence on input data was once again showing up
for values of 𝜇̂𝐵 beyond a threshold at 𝜇̂𝐵 ∼ 2.
Finally, we notice that the inverse-problem machinery we described has an obvious other application
for Laplace (anti)transforms. The relevant quadrature formula is in this case Gauss-Laplace. There
is a variety of possible applications for this (spectral functions, but not only that).

We reported the status of our studies at the time of the conference. Since then, we made
substantial progress, both for the Cauchy formula which is relevant for the subject of this work and
for the Laplace transform case. These will be accounted for in a publication we will release soon.

Acknowledgments

This work is supported by INFN under the research project i.s. QCDLAT. It is our pleasure to thank
all our colleagues in the Bielefeld-Parma Collaboration: we plan to apply all this machinery in the
context of our common research plans.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
7
4

Analytic continuation from imaginary chemical potential Francesco Di Renzo

References

[1] P. de Forcrand, Simulating QCD at finite density, PoS LAT2009 (2009) 010 [1005.0539].

[2] C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann et al., The QCD
thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002)
074507 [hep-lat/0204010].

[3] R.V. Gavai and S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite chemical
potentials, Phys. Rev. D 68 (2003) 034506 [hep-lat/0303013].

[4] P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary
chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016].

[5] M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys.
Rev. D 67 (2003) 014505 [hep-lat/0209146].

[6] P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra, C. Schmidt et al., Contribution
to understanding the phase structure of strong interaction matter: Lee-Yang edge singularities
from lattice QCD, Phys. Rev. D 105 (2022) 034513 [2110.15933].

[7] D.A. Clarke, P. Dimopoulos, F. Di Renzo, J. Goswami, C. Schmidt, S. Singh et al., Searching
for the QCD critical endpoint using multi-point Padé approximations, 2405.10196.

[8] HotQCD collaboration, Taylor expansions and Padé approximants for cumulants of
conserved charge fluctuations at nonvanishing chemical potentials, Phys. Rev. D 105 (2022)
074511 [2202.09184].

9

https://doi.org/10.22323/1.091.0010
https://arxiv.org/abs/1005.0539
https://doi.org/10.1103/PhysRevD.66.074507
https://doi.org/10.1103/PhysRevD.66.074507
https://arxiv.org/abs/hep-lat/0204010
https://doi.org/10.1103/PhysRevD.68.034506
https://arxiv.org/abs/hep-lat/0303013
https://doi.org/10.1016/S0550-3213(02)00626-0
https://arxiv.org/abs/hep-lat/0205016
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1103/PhysRevD.67.014505
https://arxiv.org/abs/hep-lat/0209146
https://doi.org/10.1103/PhysRevD.105.034513
https://arxiv.org/abs/2110.15933
https://arxiv.org/abs/2405.10196
https://doi.org/10.1103/PhysRevD.105.074511
https://doi.org/10.1103/PhysRevD.105.074511
https://arxiv.org/abs/2202.09184

	The lattice QCD sign problem and the complex B plane
	Analytic continuation from multi-point Padè
	Analytic continuation as an inverse problem (Cauchy integral formula)

