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The nature of the QCD phase transition in the chiral limit presents a challenging problem for lattice
QCD. However, its study provides constraints on the phase diagram at the physical point. In this
work, we investigate how the order of the chiral phase transition depends on the number of light
quark flavours. To approach the lattice chiral limit, we map out and extrapolate the chiral critical
surface that separates the first-order region from the crossover region in an extended parameter
space, which includes the gauge coupling, the number of quark flavours, their masses, and the
lattice spacing. Lattice simulations with standard staggered quarks reveal that for each 𝑁 𝑓 < 8,
there exists a tricritical lattice spacing 𝑎tric (𝑁 𝑓 ), at which the chiral transition changes from first
order (𝑎 > 𝑎tric) to second order (𝑎 < 𝑎tric). Thus, the first-order region is merely a lattice artifact
and not connected to the continuum. By determining the associated temperatures 𝑇 (𝑁 tric

𝑓
, 𝑎tric) at

these tricritical points, we confirm the expected decrease in the critical temperature as the number
of flavours increases. The obtained temperatures define a tricritical line which is connected to
the continuum and terminates at a physical 𝑁 tric

𝑓
(𝑎 = 0). Our data is compatible with a vanishing

temperature at that point, 𝑇 (𝑁 tric
𝑓

(𝑎 = 0)) = 0.
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(a) Columbia plot in plane of 𝑚𝑠 and 𝑚𝑢,𝑑 (b) Columbia plot for mass-degenerate quarks

Figure 1: Columbia plots. Every point represents a phase boundary with an implicitly associated (pseudo-)
critical temperature 𝑇𝑐. Figures are taken from [6].

1. Introduction

The chiral limit refers to QCD in the presence of massless quarks. As a controllable deformation
of QCD, it offers valuable insights into fundamental principles of the strong interaction and provides
relevant constraints for physical QCD. Particularly with the aim of improving our understanding of
the chiral phase transition, it is worth studying the massless limit of quarks. Only in the presence
of massless quarks, the chiral symmetry is exact and thus its spontaneous breaking has to be
accompanied by a true non-analytic phase transition.
How the chiral transition is affected by a change of the quark masses is illustrated in a so-called
Columbia plot. Figure 1a depicts the nature of the QCD thermal transition as a function of degenerate
up- and down-quark masses and the strange-quark mass [1]. The variation of masses can be used as
an interpolation of QCD between one to three flavours. The chiral transition at the physical point is
known to be an analytic crossover [2]. Quenched QCD in the limit of infinitely heavy masses (upper
right corner) reduces to a 𝑆𝑈 (3) Yang-Mills theory in the presence of static quarks and exhibits a
first-order phase transition of the Z3-center symmetry [3–5]. However, the situation in the chiral
limit (lower and upper left corner) is more delicate. Massless quarks cannot be simulated directly
with Monte-Carlo simulations due to zero modes in the dirac operator. Non-perturbative statements
from first principles are therefore not straightforward. Nevertheless, an increased interest in recent
years has led to accumulating confirmations that QCD with both, two and three flavours, exhibit a
second-order transition for massless quarks. Support for this conclusion comes from lattice methods
[6–12], as well as functional approaches [13–17].
The question remains whether a second-order transition persists in the chiral limit for high numbers
of flavours. This is illustrated in Fig. 1b. Instead of using the strange mass as interpolation between
two and three flavours, we consider degenerate quark masses and treat the number of fermions, 𝑁 𝑓 ,
as a continuous real parameter. Assuming now that a first-order transition emerges at some higher
number of flavours, the chiral limit features triple points characterized by the coexistence of three

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
7
2

The order of the chiral phase transition in massless many-flavour lattice QCD Jan Philipp Klinger

Quantum 
tricritical point

𝑁 tric
𝑓

at 𝑇 = 0

(a) Szenario 1: 2nd-order transition for all 𝑁 𝑓

   1 st order triple

𝑁 tric
𝑓

at 𝑇 > 0

(b) Szenario 2: 1st-order transition for higher 𝑁 𝑓

Figure 2: Comparison of phase diagrams for possible scenarios for the chiral limit depending on whether a
first-order transition emerges for higher 𝑁 𝑓 or not. Figures are taken from [6].

distinct states (a vanishing, positive and negative chiral condensate at the critical temperature). The
onset of the triple line is marked by a tricritical point. For a detailed description see [6]. All flavours
below 𝑁 tric

𝑓
exhibit a second-order phase transition in the chiral limit, whereas those above undergo

a first-order transition. The first-order region, which also extends to non-vanishing masses, is then
bounded by a Z2-boundary line. In fact, such a Z2-line was found by our group in lattice simulations
[6, 18]. However, it was simultaneously shown that the size of the first-order region decreases with
decreasing lattice spacing. It was concluded that the first-order region is thus a cutoff effect, and
the transition is second-order in the continuum limit for at least 𝑁 𝑓 ≤ 6.
In this work we extend the Columbia plot (Fig. 1b) into a phase diagram, see Fig. 2, by determining
the critical temperatures. Of particular interest is the temperature at the tricritical point 𝑁 tric

𝑓
. A

rough outline of the expected behavior of the critical temperature as a function of the number of
flavours in the chiral limit can be derived from perturbation theory. For small 𝑁 𝑓 a linear decrease
in 𝑇 is predicted [19], which transitions to exponential Miransky-scaling for higher 𝑁 𝑓 [20] and
ultimately ends at the onset of the conformal window. The latter arises due to the emergence of
non-trivial infrared (Banks-Zaks) fixed points [21]. The perturbative two-loop beta function of
the running coupling suggests the fixed points to emerge between 𝑁 𝑓 ≃ 8.05 and 16.5. However,
non-perturbative dynamics might alter the onset 𝑁∗

𝑓
of the conformal window, leaving it an open

question for ongoing research. Studies suggest 8 ≲ 𝑁∗
𝑓
≲ 12 [19, 22–29], with a growing tendency

towards 𝑁∗
𝑓
= 8 being the sill of the conformal window [30, 31]. The absence of a running coupling

renders QCD scale-invariant, resulting in a chirally symmetric phase and the lack of a thermal phase
transition, i.e., 𝑇 = 0.
Figure 2 illustrates this expected decrease of the critical temperature with the number of flavours.
Fig. 2a corresponds to the scenario that the second-order transition, found for 𝑁 𝑓 = 2 and 3, extends
all the way down to 𝑇 = 0, whereas Fig. 2b shows the potential opening of a first-order area, that is,
the second-order line terminates at a finite T at 𝑁 tric

𝑓
and is followed by a first-order transition up to

the conformal window. Both scenarios have a tricritical point 𝑁 tric
𝑓

but can be distinguished by its
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associated temperature at that point. While in scenario Fig. 2a, the tricritical point coincides with
the onset of the conformal window 𝑁∗

𝑓
and has 𝑇 (𝑁 tric

𝑓
) = 0, the temperature at 𝑁 tric

𝑓
in scenario

Fig. 2b is 𝑇 (𝑁 tric
𝑓
) > 0.

Our goal is to determine 𝑁 tric
𝑓

and its corresponding temperature. Once 𝑇 (𝑁 tric
𝑓
) is known, it will

reveal whether the conformal window is approached through a first-order or second-order transition.
In case of the latter, our approach might even pinpoint the onset of the conformal window.

2. Methodology and computational framework

Strategy
Since the chiral limit is not accessible to lattice simulations, it relies on extrapolations. If a first-
order region is to emerge at higher 𝑁 𝑓 in the chiral limit, a tricritical point is guaranteed to exist
which is approached by a second-order wingline with known scaling [32]

𝑁𝑐
𝑓 (𝑚) = 𝑁 tric

𝑓 + 𝐴 · 𝑚2/5 + 𝐵 · 𝑚4/5 + O(𝑚6/5). (1)

Once the critical masses on this Z2-boundary line are determined for several 𝑁 𝑓 , the tricritical point
𝑁 tric

𝑓
can be found by extrapolation. Nevertheless, as all simulations are performed on the lattice,

the Columbia plots gets extended in another dimension consisting of the lattice spacing. In [6] it
was found that the Z2-boundary highly depends on the lattice spacing. We thus repeat mapping out
the Z2-line and extracting 𝑁 tric

𝑓
for several lattice spacings.

Simulation details
Our QCD lattice simulations employ the standard Wilson gauge action and unimproved staggered
fermions on lattices with size 𝑁𝜏 × 𝑁3

𝜎 . The tuneable bare parameters are the degenerate quark
mass 𝑎𝑚, the inverse gauge coupling 𝛽 = 6/𝑔2 and the number of fermions 𝑁 𝑓 . The coupling 𝛽

controls the lattice spacing 𝑎 and tunes the temperature through the relation 𝑇 = 1/[𝑎(𝛽)𝑁𝜏]. By
keeping 𝑇 constant, the lattice spacing can be reduced by increasing 𝑁𝜏 . Our codebase is built
on the OpenCL-based lattice QCD framework CL2QCD [33] . It is executed on the GPU clusters
VIRGO at GSI in Darmstadt and Goethe-HLR at the Center for Scientific Computing in Frankfurt.

Determining the critical surface
A critical point on the Z2-boundary corresponds to a set of critical couplings {𝛽Z2

𝑐 , 𝑎𝑚
Z2
𝑐 } at fixed

𝑁 𝑓 and 𝑁𝜏 . The order of the chiral transitions is studied by the use of the chiral condensate as a
(quasi-)order parameter, ⟨O⟩ = ⟨Ψ̄Ψ⟩, and its distribution is analysed via its generalised moments

𝐵𝑛 =
⟨(O − ⟨O⟩)𝑛⟩〈
(O − ⟨O⟩)2〉𝑛/2 . (2)

To obtain the critical coupling 𝛽
Z2
𝑐 and critical mass 𝑎𝑚Z2

𝑐 at some fixed 𝑁 𝑓 and 𝑁𝜏 , we perform
a finite size scaling analysis. We start to determine the (pseudo-)critical 𝛽𝑝𝑐 at three different
masses in the vicinity of the critical mass value 𝑎𝑚

Z2
𝑐 by scanning in the lattice gauge coupling

for vanishing skewness, 𝐵3(𝛽𝑝𝑐, 𝑎𝑚, 𝑁𝜎) = 0. This is repeated for three different aspect ratios
𝑁𝜎/𝑁𝜏 ∈ {2, 3, 4}. Identifying the kurtosis 𝐵4(𝛽𝑝𝑐, 𝑎𝑚, 𝑁𝜎) on this pseudocritical hypersurface
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and assuming its associated critical value of 𝐵Z2
4 = 1.6044(10), the Z2-critical mass is extracted by

a finite size scaling fit

𝐵4(𝛽𝑝𝑐, 𝑎𝑚, 𝑁𝜎) ≈
(
𝐵

Z2
4 + 𝑐[𝑎𝑚 − 𝑎𝑚Z2

𝑐 ]𝑁1/𝑣
𝜎

) (
1 + 𝑏𝑁

𝑦𝑡−𝑦ℎ
𝜎

)
. (3)

The last factor is a finite volume correction term, where 𝑦𝑡 = 1/𝑣 = 1.5870(10) and 𝑦ℎ = 2.4818(3)
are the associated 3D Ising exponents [34, 35]. Once the critical mass 𝑎𝑚Z2

𝑐 is known, the critical
values of the coupling constant 𝛽Z2

𝑐 at 𝑎𝑚Z2
𝑐 are obtained by a linear fit of the (pseudo-)critical 𝛽𝑝𝑐

values at the simulated quark masses.

3. Results

3.1 Phase boundary in the lattice parameter space

The chiral critical surface that separates the first-order region from the crossover has been
mapped out in an enlarged parameter space of our lattice action {𝛽, 𝑎𝑚, 𝑁 𝑓 , 𝑁𝜏}. For several
numbers of flavours 𝑁 𝑓 ∈ [2, 8] and lattice spacings 𝑁𝜏 ∈ {4, 6, 8, 10} the critical couplings
{𝛽Z2

𝑐 , 𝑎𝑚
Z2
𝑐 } were identified, characterizing the Z2-boundary line. Figure 3a shows the critical

masses 𝑎𝑚
Z2
𝑐 over the number of flavours; the values of the critical coupling are implicit. This

figure is the lattice version of Fig. 1b and illustrates how the first-order region behaves with the
lattice spacing 𝑁𝜏 . The indicated lines correspond to the Z2-boundary fitted according to Eq.(1).
It can be seen that the first-order region – masses below the respective lines – is highly cutoff
dependent and shrinks for decreasing lattice spacing. Furthermore, the onset of the first-order
region 𝑁 tric

𝑓
(𝑁𝜏) is pushed to higher 𝑁 𝑓 , the lower the lattice spacing. This analysis eventually

raises the question, whether a first-order region even remains for any number of flavours in the
continuum. This is tested in Fig. 3b, where 𝑎𝑚 is plotted over 𝑁−1

𝜏 = 𝑎𝑇 . Note, that the continuum
limit corresponds to the origin of the plot as 𝑎𝑚 → 0 and 𝑁𝜏 → ∞. For the first-order region to be
physical, the Z2-boundary line must hence connect to the origin of the plot, i.e., the continuum. In
this variable pair tricritical scaling of the Z2-boundary takes the form

𝑎𝑇𝑐 (𝑎𝑚, 𝑁 𝑓 ) = 𝑎𝑇 tric(𝑁 𝑓 ) + 𝐴(𝑁 𝑓 ) (𝑎𝑚)2/5 + 𝐵(𝑁 𝑓 ) (𝑎𝑚)4/5 + O
(
(𝑎𝑚)6/5

)
, (4)

for each 𝑁 𝑓 . In Fig. 3b we restricted the fit range to smaller masses, as we expect stronger scaling
behaviour. For 𝑁 𝑓 = 3 and 4, we only have two data points making an extrapolation impossible.
A clear support of tricritical scaling is given by 𝑁 𝑓 = 6 as it exhibits leading-order scaling across
three lattice spacings. The case of 𝑁 𝑓 = 8 represents an exception and will be discussed in detail
in Section 3.3. For each number of flavours, the intersection with the x-axis yields the tricritical
point 𝑎𝑇 tric(𝑁 𝑓 ). This point marks the tricritical lattice spacing in the chiral limit where the chiral
transition changes from first order (𝑎𝑇 > 𝑎𝑇 tric) to second order (𝑎𝑇 < 𝑎𝑇 tric). As our extrapolations
terminate for all flavours 𝑁 𝑓 ≤ 7 at non-zero 𝑎𝑇 tric(𝑁 𝑓 ) – and 𝑛𝑜𝑡 in the origin – we conclude
that for all flavours 𝑁 𝑓 ≤ 7, the first-order region is merely a cutoff effect, and the transition in the
continuum chiral limit is second order for all 𝑁 𝑓 ≤ 7.
Accordingly, the lattice theory differs significantly from continuum QCD in qualitative terms. We
found that on the lattice, every number of flavours, 𝑁 𝑓 ≤ 7, exhibits a tricritical point at some
𝑎𝑇 tric(𝑁 𝑓 ), with a clear trend of 𝑎𝑇 tric → 0 as 𝑁 𝑓 increases. In contrast, continuum QCD features
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1st order
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Nf = 7
Nf = 8

aTtric(Nf = 5) aTtric(Nf = 6) aTtric(Nf = 7)

(b) Projections with fixed 𝑁 𝑓

Figure 3: The Z2-boundary {𝛽Z2
𝑐 , 𝑎𝑚

Z2
𝑐 , 𝑁 𝑓 , 𝑁𝜏} projected onto different planes. Every point represents a

phase boundary with an implicitly tuned 𝛽
Z2
𝑐 (𝑎𝑚, 𝑁 𝑓 , 𝑁𝜏). The lines correspond to fits according to Eq.(1)

for the left panel and Eq.(4) for the right panel. On the right, dotted lines are LO-fits, while dashed lines are
NLO-fits. The points for 𝑁 𝑓 = 8 at 𝑁𝜏 = 8 and 10 do not correspond to the Z2-boundary, but presumably
mark the onset of the lattice bulk transition, see section 3.3.

only one unique tricritical point, 𝑁 tric, phys
𝑓

at 𝑎 = 0. Based on the qualitative behaviour shown
in Fig. 3b, this 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑁

tric, phys
𝑓

corresponds to a (not necessarily integer) value, where the
tricritical line terminates at the origin of the plot, that is, 𝑎𝑇 tric(𝑁 tric, phys

𝑓
) = 0. Our data suggest

that this physical tricritical point must be located at 𝑁 tric, phys
𝑓

> 7. Whether this point signals the
onset of first-order transitions or marks the end of chiral symmetry breaking, i.e., the beginning of
the conformal window, is revealed by the corresponding temperature at that point.

3.2 Phase boundary in physical units

The temperature is calculated by introducing physical units through setting the scale in our
lattice simulations. We stress that comparing QCD with different numbers of flavours requires
caution as this is not merely a modification of standard bare parameters but rather a change of
the entire theory. A fixed reference scale for different 𝑁 𝑓 is hence problematic. Furthermore, the
understanding of units loses its conventional meaning in this setting, as our study with degenerate
quarks and various 𝑁 𝑓 values departs significantly from the physical point. Our method of choice
for measuring the lattice spacing is via the improved Sommer parameter 𝑟1 [36, 37]. It is directly
tied to the force between two static quarks and has proven to be robust against changes in quark
mass and number of flavours [38, 39].
The calculated lattice spacings for our data of the Z2-boundaries are shown in Fig. 4 in units of
𝑓 𝑚. We chose this representation similar to Fig. 3b, with 𝑎𝑚 over 𝑎𝑇 = 𝑁−1

𝜏 , as the connection
𝑎 ∼ 𝑁−1

𝜏 becomes directly evident. Once 𝑎 is known, all other lattice observables can be converted
to physical units. Thus, we derive Fig. 5 showing the mass in units of 𝑟1 over the critical temperature
in 𝑀𝑒𝑉 . Again, we perform fits for each 𝑁 𝑓 according to our tricritical scaling ansatz

𝑇𝑐 (𝑚, 𝑁 𝑓 ) = 𝑇 tric(𝑁 𝑓 ) + 𝐴(𝑁 𝑓 )𝑚2/5 + 𝐵(𝑁 𝑓 )𝑚4/5 + O(𝑚6/5). (5)

The tricritical points 𝑇 tric(𝑁 𝑓 ), i.e., the intersections with the x-axis, tell us at which temperature
chiral symmetry is restored in the chiral limit. Note that these are not the critical temperatures in
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Figure 4: The lattice spacings of the Z2-boundary
in physical units.
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Figure 5: The critical temperatures on the Z2-
boundary. The lines correspond to fits according to
Eq.(5). The points for 𝑁 𝑓 = 8 at 𝑁𝜏 = 8 and 10 do
not correspond to the Z2-boundary.

the continuum, but rather the transition temperatures at the tricritical points which, demonstrated in
the previous section, are at finite lattice spacings 𝑎𝑇 tric. Nevertheless, Fig. 5 reveals a decreasing
trend in the tricritical temperature, with 𝑇 tric(𝑁 𝑓 ) → 0 as 𝑁 𝑓 increases. In combination with the
finding of the previous section, namely 𝑎𝑇 tric(𝑁 𝑓 ) → 0, our data is consistent with the existence
of a unique (not necessarily integer) tricritical 𝑁 tric, phys

𝑓
in the continuum with a temperature of

𝑇 (𝑁 tric, phys
𝑓

) = 0. The thus resulting picture is visualized in Fig. 6 and discussed in the conclusion.

3.3 Bulk Transition for 𝑵 𝒇 = 8

The analysis based on tricritical scaling for numbers of flavours 𝑁 𝑓 ≤ 7 cannot be applied
for 𝑁 𝑓 = 8. The reason is the occurrence of the lattice bulk transition at 𝑁𝜏 = 8 and 10. This
transition is a pure lattice artifact and does not correspond to a physical phase transition in the
continuum. It is associated with the discretization of spacetime, not the physical continuum system,
and becomes more pronounced at strong coupling (large lattice spacing). See [40–43] for details
and references. The bulk transition differs from a thermal phase transition in that it is independent
of the temperature, or 𝑁𝜏 . This is observed in Figures 3a and 3b, where increasing 𝑁𝜏 from 8 to 10
does not result in a change in the critical mass for 𝑁 𝑓 = 8. Furthermore, the critical 𝛽-values for
𝑁𝜏 = 8 and 10 are also identical (not shown). This is eventually the reason for the similar lattice
spacings in Fig. 4, even though simulations were performed at different values of 𝑁𝜏 . It suggests
that the critical masses at 𝑁𝜏 = 8 and 10 do not correspond to a Z2-boundary, but to the onset of
the bulk transition. Determining the critical mass-value 𝑚

Z2
𝑐 of the thermal transition is no longer

within reach, as for 𝑁𝜏 ≥ 8, it falls below the onset of the bulk transition. For masses below the
onset, we are in a bulk regime where the thermal restoration of chiral symmetry ceases to exist.
Concluding, for 𝑁 𝑓 = 8, the thermal Z2-line does not terminate in the chiral limit at a tricritical
point, but instead ends at a non-zero mass 𝑎𝑚bulk > 0 which is the onset of the bulk phase. There
is hence no basis for tricritical scaling. Nevertheless, based on the fact that it is well established
that the bulk regime is a lattice artifact and not physical, we conclude that for 𝑁 𝑓 = 8, the observed
first-order region is again not connected to the continuum.
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Figure 6: Lattice phase diagram in the chiral limit. Tricritical points {𝑁 tric
𝑓
, 𝑇 tric, 𝑎tric} in red separate the

first order from the second-order region. Only the latter is connected to the continuum 𝑎 = 0.

4. Conclusion
For unimproved staggered fermions, a first-order transition exists in the chiral limit for all 𝑁 𝑓

on coarse lattices. However, this is merely a cutoff effect and terminates at a finite tricritical lattice
spacing, 𝑁 tric−1

𝜏 = 𝑎𝑇 tric(𝑁 𝑓 ), for all 𝑁 𝑓 ≤ 7. It was observed that 𝑎𝑇 tric → 0 as 𝑁 𝑓 increases.
The temperatures at these tricritical points were determined through scale setting, revealing that
𝑇 tric(𝑁 𝑓 ) → 0 with increasing 𝑁 𝑓 . The resulting picture is presented in Fig. 6. The 𝑇 − 𝑁 𝑓 phase
diagram in the chiral limit is extended by a third dimension being the lattice spacing. The indicated
surface separates a chirally broken regime (below) from a chirally symmetric regime (above). For
each lattice spacing 𝑎 there is a corresponding tricritical point 𝑁 tric

𝑓
(𝑎). The tricritical points lie on

a tricritical line indicated in red. This line marks the separation between the first-order region for
large lattice spacing and a second-order region for small lattice spacing. Following the tricritical
line to 𝑎 = 0, it approaches the physical tricritical point 𝑁 tric, phys

𝑓
. Our data is consistent with a

physical tricritical point at 𝑇 = 0. In this case 𝑁
tric, phys
𝑓

coincides with the onset of the conformal
window 𝑁∗

𝑓
and marks the end of chiral symmetry breaking. Accordingly, a first-order transition in

the chiral limit can be excluded for all numbers of flavours. We have not yet been able to pinpoint
𝑁

tric, phys
𝑓

. However, we have first indications for a non-integer value between 7 < 𝑁
tric, phys
𝑓

< 8.
This physical 𝑁 tric, phys

𝑓
is then characterized by a Z2-boundary line terminating, on the one hand,

in the origin of Fig. 3b, i.e., 𝑎𝑇 tric = 0 and, on the other hand, also in the origin of Fig. 5, i.e.,
𝑇 tric = 0. For 𝑁 𝑓 = 8, we observe a lattice bulk transition and the absence of a tricritical point.
As the bulk transition is known to be a discretization artefact, the statement remains valid that the
first-order region observed on the lattice is not connected to the continuum for any 𝑁 𝑓 . This renders
the transition in the chiral limit second order for all numbers of flavours unless a, so far unknown,
first-order region emerges at very small lattice spacings.
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