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In this work we discuss our preliminary results regarding the so-called Roberge-Weiss (RW)
transition, which is found for imaginary values of the baryon chemical potential, in the presence
of a background magnetic field. We perform lattice QCD simulations on 𝑁𝑡 = 6, 8 lattices with
2 + 1 flavors of stout-staggered fermions at physical quark masses and the tree-level Symanzik
improved gauge action. We determine the location the RW endpoint at finite magnetic fields and
we study the order of the transition.
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1. Introduction

The QCD phase diagram at finite temperature and density is extensively studied due to its
importance for understanding various physical phenomena, such as heavy-ion collision experiments
and compact stars. At zero chemical potential the confined hadronic phase is known to undergo
a transition to the deconfined quark-gluon plasma phase. It is a true phase transition only in the
vanishing / infinite quark masses limits, where it is associated with the spontaneous symmetry
breaking of the chiral / center symmetry. For physical quark masses the transition is a crossover
taking place at 𝑇𝑐 ≃ 155 MeV [1–5], but it is expected to become a true first order phase transition
at high chemical potentials, starting from a critical point where the transition is second order.
Unfortunately, first-principles calculations in this regime are hindered by the sign problem. Despite
this challenge, considerable theoretical and experimental efforts are being made to locate the critical
endpoint.

From a theoretical perspective, QCD at finite density can be studied, for instance, through
simulations at purely imaginary chemical potentials. Since the theory at imaginary 𝜇𝑞 is free of the
sign problem, lattice simulations can be conducted and numerical results can be extrapolated to real
chemical potentials by analytic continuation [6–9]. At imaginary 𝜇𝑞 the theory also has a phase
structure interesting on its own. It exhibits a new symmetry, the Roberge-Weiss symmetry [10]. This
is a remnant of the center symmetry and is related to the presence of first order phase transition lines
between phases characterized by a different orientation of the Polyakov loop, at temperatures greater
than the Roberge-Weiss temperature 𝑇𝑅𝑊 , above which the symmetry is spontaneously broken. The
Roberge-Weiss lines lie on the chemical potentials 𝜇𝑞/𝑇 = 𝑖 (2𝑘 +1) 𝜋/3 and they end up at critical
endpoints (the RW endpoints) which have been studied extensively in the literature [11–22] and are
thought to be second order for physical quark masses [23, 24].

The phase diagram can also be extended by introducing other phenomenologically relevant
parameters. In particular since strong magnetic fields arise in non-central heavy-ion collisions
and could have played a role in the evolution of the early Universe, one can introduce an external
magnetic field and investigate the effects of this parameter on theoretical predictions (for a recent
review, see Ref. [25]). Previous research showed that in the presence of a magnetic field the chiral
restoration temperature decreases [26]. Additionally, chiral symmetry breaking is enhanced at
zero temperature, even though the opposite happens at higher temperatures, an effect known as
inverse catalysis [27] which however depends on the pion mass [28–30]. Moreover, based on the
observed strengthening of the chiral transition, it was conjectured to become first order at strong
magnetic fields [31, 32]: numerical evidence for a first order line was eventually shown in Ref. [33],
with a critical endpoint constrained in the range (𝑇, 𝑒𝐵) = (63 ÷ 98 MeV, 4 ÷ 9 GeV2). Many
other non-trivial effects have been discussed in the literature: Refs. [34, 35] studied the electrical
conductivity of the quark-gluon plasma in the presence of a background magnetic field and found
that the conductivity along the magnetic field grows with the magnetic field; Ref. [36] investigated
the effect of an external magnetic field on the fluctuations and correlations of conserved charges,
which are used to probe the QCD phase structure in heavy-ion collision experiments; Ref. [37]
investigated the QCD equation of state at finite density in an external magnetic field; Refs. [38–41]
investigated the effect of the magnetic field on the confining properties of QCD.

In this work we explore the effect of a background magnetic field on the phase diagram of
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QCD at imaginary chemical potentials, in particular we study how the presence of a finite magnetic
field affects the RW endpoint. The Roberge-Weiss and chiral transitions are somewhat related: not
only the RW endpoint is attached to (the analytic continuation of) the chiral transition line, but the
Roberge-Weiss temperature and the chiral restoration temperatures have been found to be very close
to each other in the chiral limit [42, 43]. Therefore, it is conceivable that a magnetic field could
affect the RW transition similarly to the chiral transition, by lowering the critical temperature and
turning the transition to first order. Furthermore, the first order line found for large 𝑒𝐵 in the 𝑇 − 𝑒𝐵

plane is reminiscent of the similar expected in the 𝑇 − 𝜇𝐵 plane, so exploring the effects of a baryon
chemical potential (even if imaginary) on the magnetic first order line could better define the terms
of this possible analogy.

2. Numerical set-up

We ran lattice simulations with 𝑁 𝑓 = 2+ 1 stout-staggered fermions at the physical point using
the tree-level Symanzik improved gauge action. The partition function is

𝑍 =

∫
[𝐷𝑈] 𝑒−𝑆𝑌𝑀

∏
𝑓 =𝑢,𝑑,𝑠

det (𝑀 𝑓
𝑠𝑡 )

1
4 ,

where the gauge action and the staggered fermion matrix are

𝑆𝑌𝑀 = − 𝛽

3

∑︁
𝑖,𝜇≠𝜈

(
5
6
𝑊1×1

𝑖,𝜇𝜈 −
1
12

𝑊1×2
𝑖,𝜇𝜈

)
(𝑀 𝑓

𝑠𝑡 )𝑖 𝑗 = 𝑚̂ 𝑓 𝛿𝑖, 𝑗 +
4∑︁

𝜇=1

𝜂𝑖;𝜇

2

(
𝑈

(2)
𝑖;𝜇 𝛿𝑖, 𝑗− 𝜇̂ −𝑈

(2)†
𝑖− 𝜇̂;𝜇𝛿𝑖, 𝑗+𝜇̂

)
.

with 𝑊1×1
𝑖,𝜇𝜈

and 𝑊1×2
𝑖,𝜇𝜈

being the 1 × 1 and 1 × 2 Wilson loops, 𝑚̂ 𝑓 the bare quark masses, 𝜂𝑖;𝜇 the
staggered quark phases and𝑈 (2)

𝑖;𝜇 the twice stout smeared link variables. Bare parameters have been
tuned in order to move on a line of constant physics, based on the determinations of Refs. [44–46].

A uniform background magnetic field along the 𝑧 direction has been introduced on the lattice
by adding 𝑈 (1) phases to the link variables 𝑈 (2)

𝑖;𝜇 ↦→ 𝑢
𝑓

𝑖;𝜇𝑈
(2)
𝑖;𝜇 , with

𝑢
𝑓

𝑖;𝑦 = 𝑒𝑖𝑎
2𝑞 𝑓 𝐵 𝑖𝑥 , 𝑢

𝑓

𝑖;𝑥 |𝑖𝑥=𝑁𝑥
= 𝑒−𝑖𝑎

2𝑞 𝑓 𝑁𝑥𝐵𝑖𝑦 , 𝑢
𝑓

𝑖;𝑥 |𝑖𝑥≠𝑁𝑥
= 𝑢

𝑓

𝑖;𝑧 = 𝑢
𝑓

𝑖;𝑡 = 1.

The magnetic field must obey the quantization condition 𝑞 𝑓 𝐵 =
2𝜋𝑏𝑧

𝑎2𝑁𝑥𝑁𝑦
, with 𝑏𝑧 an integer number,

and to avoid cut-off effects one would like to have 2𝑏𝑧/𝑁𝑥𝑁𝑦 ≪ 1.
Simulations have been performed on 𝑁𝑡 = 6, 8 lattices of different volumes 𝑁3

𝑠 . For each lattice
we varied the temperature while keeping the chemical potential fixed on the RW line 𝜇𝑞/𝑇 = 𝑖𝜋.
The Roberge-Weiss temperature has been estimated as the inflection point of the imaginary part
of the Polyakov loop (which acts as the order parameter for the transition) and the peak of its
susceptibility,

𝐿 = ⟨|𝐼𝑚𝑃 |⟩ 𝜒𝐿 = 𝑁𝑡𝑁
3
𝑠 (⟨|𝐼𝑚𝑃 |2⟩ − ⟨|𝐼𝑚𝑃 |⟩2).
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The simulations have been repeated for several magnetic fields 𝑒𝐵 =
6𝜋𝑏𝑧

(𝑎𝑁𝑠 )2 =
6𝜋𝑏𝑧𝑁

2
𝑡

𝑁2
𝑠

𝑇2.
For some magnetic fields we also applied a finite-size scaling analysis to assess the nature of the
transition.

3. Numerical results for 𝑁𝑡 = 6

We performed an initial series of runs at 𝑒𝐵 = 0.2, 0.4 and 0.6 GeV2 on 𝑁𝑡 = 6 lattices.
Finite-size effects were checked by comparing the results for 𝑁𝑠 = 18, 24 lattices. These effects
are small, for instance at 𝑒𝐵 = 0.6 GeV2 we have calculated 𝑇𝑅𝑊 = 180.38(69) MeV for 𝑁𝑠 = 18
and 𝑇𝑅𝑊 = 178.99(59) MeV for 𝑁𝑠 = 24. The central values are in agreement within 1.5 𝜎. The
Roberge-Weiss temperature is found to decrease monotonically with an increasing magnetic field.
Numerical results are illustrated in Fig. 1, where we also show the results at 𝑒𝐵 = 0 GeV2 from a
previous work. The blue error bars denote the results from the simulations. The dashed curve is
the result of a fit using the rational function ansatz 𝑇𝑅𝑊 (𝑒𝐵) = 𝑇𝑅𝑊 (0) 1+𝑎 (𝑒𝐵)2

1+𝑏 (𝑒𝐵)2 . This is the same
ansatz employed in Ref. [31] to parametrize the chiral transition line on the (𝜇𝑞 = 0, 𝑇, 𝑒𝐵) plane,
and it describes well our data, at least at these relatively low magnetic fields. We notice that the
critical line changes curvature at 𝑒𝐵 ∼ 0.6 GeV2, close to the magnetic flipping point where Ref.
[47] observed a qualitative change in the behavior of the physical curvature of the chiral transition
at nonzero baryon density.
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T
R
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Nt = 6 fit
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Figure 1: Roberge-Weiss temperature as a function of the magnetic field for 𝑒𝐵 = 0.0 to 0.6 GeV2. The blue
error bars depict the numerical results from 𝑁𝑡 = 6 simulations, while the blue dashed line represents a fit
using a rational function ansatz.

We also conducted additional runs in the strong magnetic field regime, for 𝑒𝐵 = 1.0 and
2.5 GeV2. For 𝑒𝐵 = 1.0 GeV2 the simulations were performed for three spatial extensions 𝑁𝑠 =

18, 24, 30. Fig. 2 shows the Monte Carlo histories (left panel) and histograms (right panel) of the
order parameter obtained for the three volumes close to 𝑇𝑅𝑊 . The absence of a double peaked
structure in the histograms suggests that the transition has not yet turned first order. This has been
confirmed by a finite-size scaling analysis. The susceptibility is expected to scale as

𝜒𝐿 = 𝑁
𝛾

𝜈
𝑠 𝜙(𝜏𝑁

1
𝜈
𝑠 ) , (1)

where 𝜏 =
𝑇−𝑇𝑅𝑊

𝑇𝑅𝑊
is the reduced temperature and 𝛾, 𝜈 are the critical exponents. Consequently,

when plotting 𝜒𝐿/𝑁
𝛾

𝜈
𝑠 as a function of 𝜏𝑁

1
𝜈
𝑠 , the plots for the different lattice sizes are expected to
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collapse onto each other. Moreover from Eq. (1) it also follows that the peaks of the susceptibility are
expected to scale ∝ 𝑁

𝛾

𝜈
𝑠 , thus the ratio 𝛾

𝜈
can be estimated by fitting the peaks to 𝜒𝑀𝐴𝑋

𝐿
(𝑁𝑠) = 𝑎 𝑁𝑏

𝑠 .
Fig. 3 shows the collapse plots for a first order transition (left panel) and a second order transition
of the 𝑍2 universality class (right panel). The data are compatible with a second order transition.
A fit of the susceptibility peaks yields 𝛾

𝜈
= 2.04(19), compatible with the critical exponents of a

second order transition of the 𝑍2 universality class.
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Figure 2: Monte Carlo histories (left panel) and histograms (right panel) of the Polyakov loop at 𝑒𝐵 =

1.0 GeV2 close to the critical temperature. Results from 𝑁𝑡 = 6 simulations with spatial extensions
𝑁𝑠 = 18, 24, 30.
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Figure 3: Collapse plots of the susceptibility at 𝑒𝐵 = 1.0 GeV2 for a first order (left panel) and second order
𝑍2 (right panel) transition. Results from 𝑁𝑡 = 6 simulations with spatial extensions 𝑁𝑠 = 18, 24, 30.

A qualitatively different picture emerges at 𝑒𝐵 = 2.5 GeV2. This can be seen in Fig. 4,
illustrating the Monte Carlo histories (left panel) and the histograms (right panel) of the Polyakov
loop obtained close to the critical temperature for spatial extensions 𝑁𝑠 = 14, 18, 24. The histograms
have a double peaked distribution, which becomes more enhanced as the volume is increased,
suggesting the presence of metastable states typical of a first order phase transition.
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Figure 4: Monte Carlo histories (left panel) and histograms (right panel) of the Polyakov loop at 𝑒𝐵 =

2.5 GeV2 close to the critical temperature. Results from 𝑁𝑡 = 6 simulations with spatial extensions
𝑁𝑠 = 14, 18, 24.

4. Numerical results for 𝑁𝑡 = 8

The numerical results from 𝑁𝑡 = 6 simulations indicate that the transition is second order at
𝑒𝐵 = 1.0 GeV2 and first order at 𝑒𝐵 = 2.5 GeV2, suggesting the existence of a critical point between
these two magnetic fields. The simulations at 𝑒𝐵 = 1.0 GeV2 and 2.5 GeV2 have been repeated on
𝑁𝑡 = 8 lattices to confirm the stability of these conclusions as we approach the continuum limit.
This is especially important at 𝑒𝐵 = 2.5 GeV2, where large discretization effects can be expected,
since for the 𝑁𝑡 = 6 lattices the magnetic field is not that far from the cut-off 𝑒𝐵 = 2𝜋/𝑎2 ∼ 5 GeV2.

The results of the finite-size scaling analysis at 𝑒𝐵 = 1.0 GeV2 are illustrated in the collapse
plots shown in Fig. 5 for both a first order (left panel) and second order (right panel) phase transition.
Even on these finer lattices the RW transition is compatible with a second order transition of the
𝑍2 universality class. This is further supported by fitting the susceptibility peaks, which yields
𝛾

𝜈
= 1.97(28). Conversely, at 𝑒𝐵 = 2.5 GeV2 the Monte Carlo histories and the histograms of the

order parameter (see respectively the left and right panels of Fig. 6) close to 𝑇𝑅𝑊 still suggest a
first order phase transition. This is confirmed by the collapse plots displayed in Fig. 7 and by a fit
of the susceptibility peaks, which yields 𝛾

𝜈
= 3.03(18).
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Figure 5: Collapse plots of the susceptibility at 𝑒𝐵 = 1.0 GeV2 for a first order (left panel) and second order
𝑍2 (right panel) transition. Results from 𝑁𝑡 = 8 simulations with spatial extensions 𝑁𝑠 = 28, 32, 40.
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Figure 6: Monte Carlo histories (left panel) and histograms (right panel) of the Polyakov loop at 𝑒𝐵 =

2.5 GeV2 close to the critical temperature. Results from 𝑁𝑡 = 8 simulations with spatial extensions
𝑁𝑠 = 24, 32, 40.
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Figure 7: Collapse plots of the susceptibility at 𝑒𝐵 = 2.5 GeV2 for a first order (left panel) and second order
𝑍2 (right panel) transition. Results from 𝑁𝑡 = 8 simulations with spatial extensions 𝑁𝑠 = 24, 32, 40.

5. Curvature of the critical line on the Roberge-Weiss plane

So far we have shown that the Roberge-Weiss temperature decreases monotonically with an
increasing magnetic field and that the transition becomes first order somewhere between 1.0 GeV2

and 2.5 GeV2. Fig. 8 summarizes the estimates obtained for 𝑇𝑅𝑊 in this work. The blue error bars
represent the results from 𝑁𝑡 = 6 simulations, while the red error bars depict the results from 𝑁𝑡 = 8
simulations. A rational function ansatz 𝑇

(2)
𝑅𝑊

(𝑒𝐵) = 𝑇𝑅𝑊 (0) 1+𝑎 (𝑒𝐵)2

1+𝑏 (𝑒𝐵)2 fits well our 𝑁𝑡 = 6 data up
to 1.6 GeV2. However an higher order rational ansatz is necessary to maintain a good quality of fit
when including the RW temperature at 𝑒𝐵 = 2.5 GeV2. The dashed blue line represents a fit done
using the rational function ansatz 𝑇 (4)

𝑅𝑊
(𝑒𝐵) = 𝑇𝑅𝑊 (0) 1+𝑎 (𝑒𝐵)2+𝑐 (𝑒𝐵)4

1+𝑏 (𝑒𝐵)2+𝑑 (𝑒𝐵)4 .
Additionally, Fig. 8 shows as dotted lines the rational function parametrization obtained in

Ref. [31] for the chiral (pseudo)critical line on the (𝜇𝑞 = 0, 𝑇, 𝑒𝐵) plane using the light quark
condensate as a probe for the chiral transition. The parametrization has been shifted along the
temperature axis to match the Roberge-Weiss temperature at zero magnetic field for 𝑁𝑡 = 6 (blue)
and 𝑁𝑡 = 8 (red). We notice that the curvature seemingly matches the curvature of our data. Indeed
by Taylor expanding our rational function ansatze around 𝑒𝐵 = 0 GeV2 we find the curvature
coefficients 𝑘 = −50.0(3.5) and 𝑘 = −56(10), respectively for 𝑇 (2)

𝑅𝑊
(𝑒𝐵) and 𝑇

(4)
𝑅𝑊

(𝑒𝐵). These
values both agree within errors with the curvature 𝑘 ∼ −44.8 of the parametrization found in Ref.
[31].
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Figure 8: Roberge-Weiss temperature as a function of the magnetic field for 𝑒𝐵 = 0.0 to 2.5 GeV2. The
blue error bars depict the numerical results from 𝑁𝑡 = 6 simulations, while the red error bars represent the
numerical results from 𝑁𝑡 = 8 simulations. The dashed blue line represents a fit using a rational function
ansatz. The dotted lines represent the parametrization obtained in Ref. [31] for the chiral (pseudo)critical
line on the 𝜇𝑞 = 0 plane by studying the light quark condensate. The parametrization has been shifted along
the temperature axis to match the Roberge-Weiss temperature at zero magnetic field for 𝑁𝑡 = 6 (blue) and
𝑁𝑡 = 8 (red).

6. Conclusions

In this work we have studied the Roberge-Weiss endpoint in the presence of a background
magnetic field. Similarly to what happens for the chiral transition, a magnetic field reduces
the Roberge-Weiss temperature and has the effect of turning the transition to first order at strong
magnetic fields. This effect occurs somewhere between 𝑒𝐵 = 1.0 and 𝑒𝐵 = 2.5 GeV2, as determined
from 𝑁𝑡 = 6 lattice simulations and later confirmed using finer lattices. The critical line on the
Roberge-Weiss plane can be parametrized by a rational function ansatz. Its curvature was estimated
to be either 𝑘 = −50.0(3.5) and 𝑘 = −56(10), depending on the order of the rational function used
for the parametrization. This curvature is similar to the curvature of the chiral (pseudo)critical line
on the 𝜇𝑞 = 0 plane estimated in the literature from the light quark condensate.
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