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If there is a first-order phase transition in the light quark region of 2+1-flavor finite temperature and
density QCD and if the region of the first-order phase transition expands with increasing density
as suggested by several studies, then, at very high densities, we may expect that the first-order
phase transition region expands into the heavy quark region of QCD, where we can perform
efficient large scale simulations by adopting an effective theory of heavy quark QCD based on
the hopping parameter expansion. In the heavy quark region of QCD, we have another first-order
phase transition region around the heavy quark limit at zero density. By numerical simulations
of effective heavy quark QCD, we found that, the first-order transition at zero density turns into
a crossover as the chemical potential is increased, but, when we increase the chemical potential
further, the change in the plaquette value near the crossover point becomes much steeper. This
may be suggesting reappearance of the first-order phase transition. In this talk, we first show the
nature of the phase transition of phase-quenched finite density QCD in the heavy quark region and
then study the effect of the complex phase to discuss whether the QCD phase transition changes
again to a first-order phase transition at very high densities.
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1. Introduction

Searching for the critical point where the finite temperature phase transition of QCD changes
from a crossover to a first-order phase transition at finite density is one of the most interesting
topics in the study of QCD. If we consider the mass of the dynamical quark to be a controllable
parameter, there are first-order phase transition regions in the light and heavy quarks regions, and
in the intermediate region there is a crossover transition at zero density. We expect the first-order
phase transition in the light mass region to expand with increasing density. In this case, the density
at which the physical mass point enters the first-order phase transition region from the crossover
region is the QCD critical point at that finite density [1–3]. And if the first-order transition region
continues to expand with density, the first-order phase transition region may expand into the heavy
quark region. The sign problem in finite density QCD is serious near the physical mass point,
but is less serious in the heavy quark region. We believe that useful information regarding the
boundaries of first-order phase transitions can be obtained in the heavy quark region, and discuss
the appearance of first-order phase transitions in the heavy quark region.

In Refs. [4–8], we determined the critical points in the heavy quark region using an effective
theory based on the hopping parameter expansion. Expanding the quark determinant in terms of
the hopping parameter 𝜅, we found that the expansion terms represented by Wilson loops winding
around the periodic boundary in the time direction are important, and the higher order expansion
terms are very strongly correlated with the leading term: Polyakov loop [9, 10]. Using these
properties, we proposed an effective theory of QCD in the heavy quark region that includes a
Polyakov loop term. Simulations of this effective theory require only the same computational cost
as quenched QCD, allowing for calculations with high statistics and large space volumes [7, 8].
Furthermore, in the heavy quark region, it is found that the phase of the quark determinant at finite
density can be obtained with good approximation from the imaginary part of the Polyakov loop [10],
making it possible to study finite density QCD with high statistics.

In this study, we explore the phase structure of finite density lattice QCD by increasing the
chemical potential while keeping the quark masses large. In the next section, we explain the
effective theory in the heavy quark region. Then, in Sec. 3, we discuss the case where the effect of
the complex phase in finite density QCD is ignored. The effect of complex phase is discussed in
Sec. 4. Section 5 presents conclusions and future prospects.

2. Effective theory in the heavy quark region

We stidy 𝑁f-flavor QCD with the standard plaquette gauge action and the Wilson quark action
on 𝑁3

𝑠 × 𝑁𝑡 lattices. 𝑁site = 𝑁3
𝑠 × 𝑁𝑡 . The partition function is given by

𝑍 =
∫

D𝑈

𝑁f∏
𝑓 =1

det 𝑀 (𝜅 𝑓 , 𝜇) 𝑒6𝑁site𝛽𝑃 , (1)

where 𝑃 the plaquette value, and 𝑀 is the Wilson quark kernel, which is a function of the chemical
potential 𝜇 and the hopping parameter 𝜅. The hopping parameter is approximately proportional
to the inverse quark mass. In the heavy quark region, we evaluate the quark determinant by the
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hopping parameter expansion around 𝜅 = 0:

ln det 𝑀 (𝜅) = ln det 𝑀 (0) + 𝑁site

∞∑
𝑛=1

𝐷𝑛𝜅
𝑛, 𝐷𝑛 =

(−1)𝑛+1

𝑁site 𝑛
tr
[(
𝜕𝑀

𝜕𝜅

)𝑛]
. (2)

The first term is ln det 𝑀 (0) = 0, and the matrix elements of (𝜕𝑀/𝜕𝜅)𝑥𝑦 are the hopping terms
in 𝑀 . Nonzero contributions appear when the product of the hopping terms form closed loops in
the space-time. Therefore, the nonzero contributions to 𝐷𝑛 are given by 𝑛-step Wilson loops and
Polyakov loops. The latter are closed by the boundary condition, where we impose the anti-periodic
boundary condition in the time direction for fermions. These 𝐷𝑛 are classified by the number of
windings 𝑚 in the time direction:

𝐷𝑛 = 𝑊 (𝑛) +
∞∑

𝑚=1
𝐿+
𝑚(𝑁𝑡 , 𝑛)𝑒𝑚𝜇/𝑇 +

∞∑
𝑚=1

𝐿−
𝑚(𝑁𝑡 , 𝑛)𝑒−𝑚𝜇/𝑇 (3)

𝑊 (𝑛) is the sum of Wilson-loop-type terms with winding number zero. 𝐿+
𝑚(𝑁𝑡 , 𝑛) and 𝐿−

𝑚(𝑁𝑡 , 𝑛)
are the sum of Polyakov-loop-type terms with winding number 𝑚 in the positive and negative
directions, respectively, and 𝐿−

𝑚(𝑁𝑡 , 𝑛) = [𝐿+
𝑚(𝑁𝑡 , 𝑛)]∗. The lowest order term is 𝐿+

𝑚(𝑁𝑡 , 𝑚𝑁𝑡 ). In
particular, 𝐿+

1 (𝑁𝑡 , 𝑁𝑡 ) is the usual Polyakov loop operator Ω.
These expansion coefficients have been calculated on configurations generated near the phase

transition point in Ref. [9] and found to have the following properties: (1) 𝑊 (𝑛) mainly effect
to shift the gauge coupling 𝛽, and have almost no effects in the determination of the critical 𝜅.
(2) 𝐿𝑚(𝑁𝑡 , 𝑛) for 𝑚 ≥ 2 are much smaller than 𝐿1(𝑁𝑡 , 𝑛). (3) 𝐿 (𝑁𝑡 , 𝑛) is strongly correlated with
the Polyakov loop ReΩ on each configuration:

𝐿 (𝑁𝑡 , 𝑛) ≈ 𝐿0(𝑁𝑡 , 𝑛)𝑐𝑛ReΩ, (4)

where 𝐿 (𝑁𝑡 , 𝑛) =
∑

𝑚 [𝐿+
𝑚(𝑁𝑡 , 𝑛) + 𝐿−

𝑚(𝑁𝑡 , 𝑛)] = 2
∑

𝑚 Re𝐿+
𝑚(𝑁𝑡 , 𝑛), 𝑐𝑛 is a proportionality

constant, and 𝐿0(𝑁𝑡 , 𝑛) is 𝐿 (𝑁𝑡 , 𝑛) when all link fields are set to𝑈𝑥,𝜇 = 1, which is given in Table 2
of Ref. [9]. (4) The complex phases of 𝐿+

1 (𝑁𝑡 , 𝑛) and Ω are approximately equal [10]:

Arg𝐿+
1 (𝑁𝑡 , 𝑛) ≈ ArgΩ. (5)

Using these properties, we propose an effective action:

𝑆eff = −6𝑁site𝛽
∗𝑃 − 𝑁3

𝑠𝜆

2

(
𝑒𝜇/𝑇Ω + 𝑒−𝜇/𝑇Ω∗

)
, 𝜆 = 𝑁𝑡

𝑁f∑
𝑓 =1

𝑛max∑
𝑛=𝑁𝑡

𝐿0(𝑁𝑡 , 𝑛)𝜅𝑛𝑓 𝑐𝑛, (6)

with which the partition function is given by 𝑍 =
∫
D𝑈 𝑒−𝑆eff . 𝑊 (𝑛) effectively shift 𝛽 from the

original 𝛽 to 𝛽∗ = 𝛽+ (1/6)𝑊0(4)∑ 𝑓 𝜅
4
𝑓 +· · · [9]. Even if the number of expansion terms increases

significantly, the effects of higher-order terms can be incorporated. The computational cost of this
simulation using 𝑆eff is reduced to the same level as quenched QCD.

3. Phase-quenched finite density QCD.

If we ignore the complex phase of 𝑒−𝑆eff , the effective action becomes 𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁3
𝑠𝜆 cosh(𝜇/𝑇)ΩR, where ΩR is the real part of Ω. Thus, by simply replacing 𝜆 with 𝜆 cosh(𝜇/𝑇)
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Figure 1: Left: Plaquette 〈𝑃〉 as a function of 𝛽∗ for each 𝜆 cosh(𝜇/𝑇). The dashed line is the strong coupling
value. Right: (〈ΩR〉 − 〈ΩR〉𝛽∗=0.5)/(〈ΩR〉𝛽∗=9 − 〈ΩR〉𝛽∗=0.5) as a function of 𝛽∗ for each 𝜆 cosh(𝜇/𝑇).

from results calculated at 𝜇 = 0, we can investigate the phase-quenched finite density QCD, ignoring
the phase, i.e., QCD with isospin chemical potential for 𝑁f = 2. Increasing 𝜆 means increasing 𝜅,
so increasing 𝜆 makes the approximation of the hopping parameter expansion worse. Therefore, we
fix 𝜅 at a small value and increase 𝜇/𝑇 . If we fix 𝜅, the convergence does not worsen. For example,
at 𝜆 = 0.005 for 𝑁f = 2, 𝑁𝑡 = 6, the convergence of the hopping parameter expansion is good.
This point is in the crossover region, since the critical point at 𝜇 = 0 is 𝜆𝑐 ≈ 0.0013. Hereafter,
changing the parameter 𝜆 cosh(𝜇/𝑇) will be considered to mean changing 𝜇 while ignoring the
complex phase.

By performing simulations over a wide range of 𝜆 cosh(𝜇/𝑇), we investigate the phase-
quenched finite density QCD. The lattice size of the simulations 𝑁site is 303 × 6. The number
of configurations for measurements is 10000 for each 𝛽∗ and 𝜆. The pseudo-heat-bath algorithm is
adopted. The left panel of Fig. 1 is the expectation value of the plaquette 〈𝑃〉 as a function of 𝛽∗

for each 𝜆 cosh(𝜇/𝑇). When 𝜆 cosh(𝜇/𝑇) = 0, the phase transition is first order, but imposing 𝜇

causes the change in 〈𝑃〉 to become milder. And from this figure, we can see that as 𝜇 is further
increased, the change in 〈𝑃〉 becomes steeper. This result is reasonable. The 𝜆 cosh(𝜇/𝑇) term in
𝑆eff does not affect the calculation of 〈𝑃〉 using the strong coupling expansion. The read dashed
line is the strng coupling value: 〈𝑃〉 = 𝛽/18 + 𝛽2/216. In the confinement phase, 〈𝑃〉 is consistent
with the result by the strong coupling expansion. Since the 𝜆 cosh(𝜇/𝑇) term forces the phase to
become the deconfinement phase even in the region where 𝛽 is small, the change in 〈𝑃〉 increases
as 𝜇 increases at the phase boundary. Furthermore, in two-flavor QCD, ignoring the complex phase
is equivalent to imposing an isospin chemical potential, so increasing 𝜇 is considered to approach
a pion condensed phase [11]. In this respect as well, it is natural that 〈𝑃〉 changes more sharply at
the crossover point with increasing 𝜇.

The expectation value of the Polyakov loop 〈ΩR〉 also changes more rapidly as 𝜇 increases. We
plot (〈ΩR〉 − 〈ΩR〉𝛽∗=0.5)/(〈ΩR〉𝛽∗=9 − 〈ΩR〉𝛽∗=0.5) as a function of 𝛽∗ for each 𝜆 cosh(𝜇/𝑇) in the
right panel of Fig. 1. Since 〈ΩR〉 becomes a large value as 𝜆 increases even in the region where 𝛽

is small, we subtracted the value of 〈ΩR〉 at 𝛽 = 0.5 to focus on the change in 〈ΩR〉 at the transition
point. Except for 𝜆 = 0, as 𝜆 cosh(𝜇/𝑇) increases, the Polyakov loop also changes more steeper.
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Figure 2: The left figure shows the parameters (𝛽, 𝜆) whose expectation values are (〈𝑃〉, 〈ΩR〉)when 𝜇 = 0.
The right figure is an enlarged view. The bold blue lines are the contour lines of 〈Ω2

I 〉.

〈ΩR〉 changes almost perpendicular to the horizontal axis for large 𝜇. It is interesting to see whether
these quantities change more rapidly in finite density QCD, which incorporates the effects of the
complex phase, and whether they behave like a first-order phase transition.

4. Complex phase effect at finite density

Introducing the probability distribution function for (𝑃,ΩR),𝑊 (𝑃,ΩR), we rewrite the partition
function as follows:

𝑍 =
∫

𝑊 (𝑃,ΩR)𝑒6𝑁site𝛽
∗𝑃𝑒𝑁

3
𝑠 𝜆 cosh 𝜇

𝑇 ΩR
〈
cos

(
𝑁3
𝑠𝜆 sinh

𝜇

𝑇
ΩI

)〉
𝑃,ΩR

𝑑𝑃𝑑ΩR

≡
∫

𝐹 (𝑃,ΩR)𝑑𝑃𝑑ΩR, (7)

where 〈· · · 〉𝑃,ΩR means the expectation value with fixed (𝑃,ΩR). For the case of 𝜇 = 0, when
configurations are generated at 𝛽∗ and 𝜆, the following equations are satisfied at (𝑃,ΩR) where the
configuration generation probability 𝐹 (𝑃,ΩR) is maximized:

𝜕 ln 𝐹 (𝑃,ΩR)
𝜕𝑃

= 6𝑁site𝛽
∗ + 𝜕 ln𝑊 (𝑃,ΩR)

𝜕𝑃
= 0,

𝜕 ln 𝐹 (𝑃,ΩR)
𝜕ΩR

= 𝑁3
𝑠𝜆 + 𝜕 ln𝑊 (𝑃,ΩR)

𝜕ΩR
= 0. (8)

The peak position of 𝐹 (𝑃,ΩR) is approximately equal to the expectation value (〈𝑃〉, 〈ΩR〉). Figure 2
(left) shows lines of constant simulation parameters 𝛽∗ and 𝜆 plotted on the (〈𝑃〉, 〈ΩR〉) plane. The
black lines roughly parallel to the vertical axis are the constant 𝛽∗ lines, and the values of 𝛽∗ are
shown on the top of the figure. The constant 𝜆 lines are shown as colored lines, and the values
of 𝜆 are written on the right side of the figure. Using Eq. (8) and the information of Fig. 2,
𝜕 ln𝑊 (𝑃,ΩR)/𝜕𝑃 and 𝜕 ln𝑊 (𝑃,ΩR)/𝜕ΩR can be obtained. The right figure is an enlarged view
of the area near the first-order phase transition.

For finite 𝜇, the peak position of 𝐹 (𝑃,ΩR) is given by

𝜕 ln 𝐹 (𝑃,ΩR)
𝜕𝑃

= 6𝑁site𝛽
∗ + 𝜕 ln𝑊 (𝑃,ΩR)

𝜕𝑃
+
𝜕 ln

〈
cos

(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)〉

𝑃,ΩR

𝜕𝑃
= 0,

𝜕 ln 𝐹 (𝑃,ΩR)
𝜕𝜕ΩR

= 𝑁3
𝑠𝜆 cosh

𝜇

𝑇
+ 𝜕 ln𝑊 (𝑃,ΩR)

𝜕ΩR
+
𝜕 ln

〈
cos

(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)〉

𝑃,ΩR

𝜕ΩR
= 0, (9)
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Figure 3: Left: 〈Ω2
I 〉 as a function of 𝑃 for each 𝜆. Right: 〈Ω2

I 〉 as a function of ΩR for each 𝛽.

where ΩI is the imaginary part of Ω. However, when 𝜇 is increased, a sign problem occurs
in which 〈cos

(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)
〉 becomes zero. To avoid the sign problem, we perform a cumu-

lant expansion: ln
〈
cos

(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)〉

= − 1
2

〈(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)2〉

𝑐
+ 1

4!

〈(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)4〉

𝑐
−

1
6!

〈(
𝑁3
𝑠𝜆 sinh 𝜇

𝑇 ΩI
)6〉

𝑐
+· · · . Here, 〈𝑥2〉𝑐 = 〈𝑥2〉, 〈𝑥4〉𝑐 = 〈𝑥4〉−3〈𝑥2〉2, 〈𝑥6〉𝑐 = 〈𝑥6〉−15〈𝑥4〉〈𝑥2〉2+

30〉〈𝑥2〉3, · · · . We approximate

ln
〈
cos

(
𝑁3
𝑠𝜆 sinh

𝜇

𝑇
ΩI

)〉
𝑃,ΩR

≈ −1
2

〈(
𝑁3
𝑠𝜆 sinh

𝜇

𝑇
ΩI

)2
〉
. (10)

We believe this approximation is sufficient for a qualitative estimation. We call it the Gaus-
sian approximation because the equation holds strictly when the complex phase is Gaussian dis-
tributed [12, 13]. Since the distributions of 𝑃 and ΩR are narrow in each simulation, the difference
between 〈Ω2

I 〉𝑃,ΩR with a fixed 𝑃 and ΩR and the usual expectation value 〈Ω2
I 〉 is within the error.

Using Eq. (8), the derivatives of ln𝑊 (𝑃,ΩR) can be measured by 𝜇 = 0 simulations. We denote
the simulation parameters at 𝜇 = 0 as (𝛽∗0, 𝜆0). The parameters 𝛽∗ and 𝜆 for which the point where
𝐹 (𝑃,ΩR) is maximum at finite 𝜇 is (𝑃,ΩR) can be calculated using the following equations:

𝛽∗ = 𝛽∗0 +
𝑁3
𝑠

12𝑁𝑡

(
𝜆 sinh

𝜇

𝑇

)2 𝜕〈Ω2
I 〉

𝜕𝑃
, 𝜆 cos

𝜇

𝑇
= 𝜆0 +

𝑁3
𝑠

2

(
𝜆 sinh

𝜇

𝑇

)2 𝜕〈Ω2
I 〉

𝜕ΩR
. (11)

If we equate the expectation value of 𝑃 and ΩR with the point with the maximum probability of
generation, these equations give us (𝛽∗, 𝜆) at finite 𝜇 whose expectation values, 〈𝑃〉 and 〈ΩR〉, are
the same as the expectation values of zero density simulations. The calculation of 〈Ω2

I 〉 is relatively
easy. We plot it in Fig. 3. The left panel shows 〈Ω2

I 〉 as a function of 𝑃 for each 𝜆, and the right
panel shows 〈Ω2

I 〉 as a function of ΩR for each 𝛽. However, the value of 〈Ω2
I 〉 is large only near the

first-order transition point at 𝜆 = 0. The blue bold lines in Fig. 3 (right) are the contour lines for
〈Ω2

I 〉 = 2.5× 10−6, 3.0× 10−6, 5.0× 10−6, 1.0× 10−5, and 2.0× 10−5. This large peak of 〈Ω2
I 〉 does

not contribute to changing the nature of the phase transition at large 𝜇.
We estimate the change in 𝛽∗ by the finite density effect, which is given by 𝜕〈Ω2

I 〉/𝜕𝑃 in
Eq. (11). The 𝑃 dependence of 〈Ω2

I 〉 is much smaller than ΩR dependence. Especially in the

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
6
2

First-order phase transitions in the heavy quark region of lattice QCD at high 𝑇 and 𝜇 Shinji Ejiri

0 0.2 0.4 0.6 0.8

Ω
R

0.0

5.0×10
-7

1.0×10
-6

1.5×10
-6

5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.5
8.0
8.5
9.0

β*

<Ω
I

2
>

4.8 5 5.2 5.4 5.6 5.8

β*

0.4

0.45

0.5

0.55

30.
20.
10.
5.0
2.0
0.0

P

λcosh(µ/T)

Figure 4: Left: Only the data of 〈Ω2
I 〉 in the high-temperature phase are plotted. Right: Plaquette as a

function of 𝛽 without the complex phase effects (dashed line) and with complex phase effects (solid line).

high-temperature phase, no 𝑃 dependence is seen. In the left panel of Fig. 4, we plot only the data
of 〈Ω2

I 〉 in the high-temperature phase and 𝜆 ≥ 1. These are depend only on ΩR. This mean that
𝜕〈Ω2

I 〉/𝜕𝑃 |ΩR = 0 in the high-temperature phase. In the low-temperature phase, 𝑃 dependence is
observed, but compared to its error, it is very small at large 𝜆, making numerical calculation of
𝜕〈Ω2

I 〉/𝜕𝑃 |ΩR difficult. On the other hand, the strong coupling analysis gives us its approximate
value for small 𝛽∗.

We calsculate the strong coupling limit of 〈Ω2
I 〉 at 𝜆 = 0 for 𝑁𝑐 = 3.

〈Ω2
I 〉 =

〈(
Ω −Ω∗

2𝑖

)2
〉
≈ 1

2
〈ΩΩ∗〉

≈ 𝑁3
𝑠

2𝑁6
𝑠𝑁

2
𝑐

(〈
tr(𝑈𝑈 · · ·𝑈) ®𝑥tr(𝑈†𝑈† · · ·𝑈†) ®𝑥

〉
+ 6

〈
tr(𝑈𝑈 · · ·𝑈) ®𝑥tr(𝑈†𝑈† · · ·𝑈†) ®𝑥+1̂

〉
+ · · ·

)
=

1
2𝑁3

𝑠𝑁
2
𝑐

+ 3
𝑁3
𝑠𝑁𝑐

(
𝛽

2𝑁2
𝑐

)𝑁𝑡

. (12)

Here, the plaquette is given by 𝑃 = 𝛽/(2𝑁2
𝑐) in the leading order. Then,

〈Ω2
I 〉 ≈

1
2𝑁3

𝑠𝑁
2
𝑐

+ 3
𝑁3
𝑠𝑁𝑐

𝑃𝑁𝑡 ,
𝜕〈Ω2

I 〉
𝜕𝑃

≈ 3𝑁𝑡

𝑁3
𝑠𝑁𝑐

𝑃𝑁𝑡−1 (13)

This behavior is approximately consistent with the simulation data in the low-temperature phase,
but 𝑃 dependence is very small.

To estimate how much 𝛽∗ shifts from 𝛽∗0 for finite 𝜇, we assume

𝜕〈Ω2
I 〉

𝜕𝑃

�����
ΩR

= 0 at high 𝑇 and
𝜕〈Ω2

I 〉
𝜕𝑃

�����
ΩR

=
3𝑁𝑡

𝑁3
𝑠𝑁𝑐

𝑃𝑁𝑡−1(1 −ΩR)𝑒−3ΩR at low 𝑇. (14)

This function takes the value of the strong coupling limit of 𝜆 = 0 at ΩR = 0 and zero at ΩR = 1.
The “3” in 𝑒−3ΩR is chosen by eye to reproduce the simulation data. The dashed lines in the right

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
6
2

First-order phase transitions in the heavy quark region of lattice QCD at high 𝑇 and 𝜇 Shinji Ejiri

panel of Fig. 4 are the plaquette for each 𝜆 cosh(𝜇/𝑇) when the complex phase is ignored, which
simply replaces 𝜆 at 𝜇 = 0 with 𝜆 cosh(𝜇/𝑇). The solid lines are the lines that incorporate the effect
of the complex phase in the low-temperature phase by shifting the horizontal axis 𝛽 using Eq. (14).
Since 𝛽 does not shift in the high-temperature phase, as 𝜇 increases, the 𝛽 shift increases the change
in the plaquette at the phase transition point. When 𝜇 is further increased, the difference between
〈𝑃〉 of the low-temperature phase, in which 𝛽 shifts, and 〈𝑃〉 of the high-temperature phase, in
which 𝛽 does not shift, becomes larger, and a gap is expected to appear at the transition point. This
predicts the appearance of a first-order phase transition. At the same time, 𝜆 cosh(𝜇/𝑇) also shifts,
but we will not discuss this here, since 𝜆 cosh(𝜇/𝑇) changes the same way in both phases and is not
related to the discontinuity. For example, we adopt 𝜆 = 0.005. When 𝜆 cosh(𝜇/𝑇) = 5.0 or greater,
the 𝛽 shift is significant, which corresponds to 𝜇/𝑇 = 7.60. Furthermore, when 𝜆 cosh(𝜇/𝑇) = 10,
𝜇/𝑇 = 8.29 and 𝜆 cosh(𝜇/𝑇) = 20, 𝜇/𝑇 = 8.99. This suggests a discontinuity in 〈𝑃〉 at the
transition point, and a first-order phase transition is expected to appear at large 𝜇/𝑇 .

5. Conclusions

Even at finite density, the phase structure of QCD in the heavy quark region can be relatively
easily studied by using an effective theory based on the hopping parameter expansion. First, we
discussed the nature of the phase transition of phase-quenched finite density QCD (QCD with an
isospin chemical potential for 𝑁f = 2) in the heavy quark region. The first order transition at zero
density turns into a crossover as 𝜇 is increased, but, when we increase 𝜇 further, the change in the
plaquette value near the crossover point becomes much steeper. Then, we estimate the effect of
the complex phase of the quark determinant to discuss whether the QCD phase transition changes
again to a first-order phase transition at very large 𝜇. In the high temperature phase, the effect
of the complex phase is negligible. In the low temperature phase, the complex phase effect leads
to a steeper change in the plaquette when estimated from the results in the strong coupling limit.
This effect of the complex phase becomes larger as 𝜇 increases. This suggests the appearance of a
first-order phase transition region at high density.

Since physical quantities change as a function of 𝜆 cosh(𝜇/𝑇), it is clear that the critical 𝜇 at
which a first-order phase transition arises becomes smaller as 𝜅 increases (the quark mass decreases).
The next question is whether the boundary line is connected to the boundary line of the first-order
phase transition in the light quark region. If connected, the critical 𝜇 at the heavy quarks provides
important information for determining the critical 𝜇 at the physical quark masses.
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