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Phase and equation of state of finite density QC>D at lower temperature Etsuko Itou

1. Introduction

The sign problem in three-color QCD at low temperatures and finite densities still remains one
of the most challenging issues in lattice Monte Carlo simulations [3]. Meanwhile, multiple groups
have actively conducted large-scale first-principles calculations using the (R)HMC algorithm for
systems such as two-color QCD with baryon chemical potential and three-color QCD with isospin
chemical potential, where the sign problem is absent. Adding explicit symmetry-breaking terms for
the U(1) baryon or isospin symmetry (i.e., diquark or pionic source terms) into the finite-density
QCD(-like) action has enabled the accumulation of gauge-field configurations in the superfluid
phase, which yields various observables that are clearly different from those in the hadron phase
and the quark-gluon plasma (QGP) phase.

Most remarkably, first-principles calculations for these QCD-like theories have attracted much
attention in the context of breaking the conformal (holographic) bound [4, 5]; the speed of sound in
the superfluid phase exceeds the value of relativistic free theory corresponding to ¢2/c? = 1/3. The
first evidence for such breaking was obtained in dense two-color QCD [1, 2]; shortly afterward, it
was independently confirmed in the case of three-color QCD with isospin chemical potential using
two different computational approaches [6-8] .

In this article, we summarize our results for the phase diagram and equation of state (EoS)
of two-color QCD at low temperatures and finite densities [1, 2, 10, 11]. Furthermore, we will
compare our results for the speed of sound and EoS with related lattice calculations, effective model
studies, and observational data on neutron stars. In particular, we focus on related works that remain
to be cited in our previous paper [2].

2. Phase diagram

For the lattice action, we employed the Iwasaki gauge action and naive Wilson fermions.
Following the approach described in Refs. [1, 2, 10], we extended the two-color QCD action by
including a number operator coupled with the quark chemical potential (). In low-temperature
and high-density regimes, furthermore, we introduced a diquark source term characterized by a
parameter j; physical quantities were calculated for several finite values of j, and then obtained by
taking the j — O limit. Using the above-mentioned action, we performed the RHMC calculations
to generate gauge configurations at 8 = 0.80, x = 0.159 for 32* (T' = 40 MeV), 16* (T = 80 MeV),
and 323 x 8 (T' = 160 MeV). The chemical potential (x) is normalized by the pseudo-scalar meson
(corresponding to a pion in QCD) mass at u = 0, namely u/mps, where mps ~ 738 MeV in our
simulations [12, 13].

First, we obtained the phase diagram on T—u plane as shown in Fig. 1. Here, we utilize three
quantities, namely, the magnitude of the Polyakov loop ({|L]|}), the diquark condensate ({gg)), and
the quark number density ({n,)) to distinguish among different phases. We use the name of each
phase as shown in Table 1, which follows Refs. [10, 17-19].

Let us focus on the two relatively low temperatures, T = 40 MeV and T = 80 MeV. At both
temperatures, the diquark condensate, which is an order parameter of the superfluidity, becomes

1 Also, at the conference, an independent analysis of the breaking of the conformal bound for dense two-color QCD
was reported [9].
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Hadronic Superfluid QGP

| Hadronic matter (7 >0) | BEC |  BCS
(IL|) || zero Zero non-zero
(qq) || zero Zero non-zero (cc p?) Zero
(ng) || zero non-zero non-zero | {ng) /n‘qree ~ 1 | non-zero

Table 1: Definition of the phases. To distinguish between the BEC and BCS phases, we use the value of
(ng). Meanwhile, (gq) is expected to scale as o 12 by the weak coupling analysis [14—16].

T A

QGP

Tc
200MeV |~ ~~.

0.89Tc (~160MeV)

BCS
vey .(sieconﬁne

0.39Tc (~80MeV)

0.19Tc (~40MeV) Hadro 1c,

(new data) ‘n

BCS
EEEEEEEEEEEEEEEEEEESR c‘();l'hl!léa)...

0.5 > i/ mps

Figure 1: Schematic QC,D phase diagram. In our previous work [10], we clarified the phase structure at
T = 160 MeV and 80 MeV, while in our recent work, we addressed what it is like at 7 = 40 MeV.

non-zero beyond u ~ mpg/2. The chiral perturbation theory (ChPT) gives the critical chemical
potential as u. = mpg/2 and the scaling behavior around p. as

(qq) = Al — pe)'?. (1)

Our data are almost consistent with these predictions. Indeed, we obtain the critical value at 7 = 40
MeV from the fitting of the data as u/mps = 0.47. AtT = 80 MeV, the “hadronic-matter phase”
was clearly observed, where (gg) = 0 but (n,) # 0 as defined in Table 1. Interestingly, the study
at 7 = 40 MeV revealed that this phase shrinks with respect to u at lower temperature. It indicates
that (ny) # 0 before the superfluid phase transition is caused by a thermal excitation of diquarks,
which correspond to the lightest hadron in the superfluid phase, at finite temperature.

Another notable finding from the comparison of the two temperatures concerns the scaling
behavior of (gq) in the BCS phase. The scaling looks nearly linear in u at T = 80 MeV, whereas
a quadratic scaling was observed at T = 40 MeV. Analytical studies at zero temperature based
on the weak-coupling expansion predict (gg) o u? [14—16]. Our results show that this analytical
prediction does not hold at higher temperatures, but become closer to this prediction at lower
temperatures. Also, in general, (gq) can be expressed approximately as A(u)u?, where A(u) is the
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diquark gap. The fact that (gg) behaves as u? suggests that the u-dependence of the diquark gap in
the BCS phase is small.
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Figure 2: The u-dependence of the topological susceptibility (red data) at T = 160 MeV, 80 MeV, and 40
MeV. At T = 160 MeV and 80 MeV, we also show the magnitude of the Polyakov loop (blue data) to see the
confining behavior.

After determining the phase diagram, we investigated the p-dependence of the topological
susceptibility in Refs. [2, 10],

xo =(0%) —(0)*. 2)
Here, Q denotes the topological charge, which we measured from the gluonic definition,
1
Q(t) = WZTI'EHVPO'GZV(X’ Z)GZO—(X,[), (3)
X

using the gradient flow method. At 7 = 160 MeV, where the hadronic to QGP phase transition
occurs as u increases, yo decreases with u as shown in the left panel of Fig. 2. On the other
hand, at low temperatures of 7 = 80 MeV (the middle panel) and 40 MeV (the right panel), where
the hadron-superfluid transition occurs, yo remains almost constant throughout the u region that
covers the hadronic and superfluid phases. We also showed that the confinement remains even in
the BCS phase, by studying the Polyakov loop (as shown in the blue data of the middle panel) and
also g—q potential at T = 40 MeV in Ref. [11]. Although the high-density region is naively expected
to be approximated by an asymptotically free theory, the macroscopic gluonic dynamics behaves
similarly to that in the hadronic phase.

3. Equation of state

Next, we consider the EoS at 7 = 40 MeV and T = 80 MeV. We calculated the trace anomaly
and pressure using the following definitions. As for the pressure, we employed

WL i
P o bt~ )
(l’l) = H 1 pCcoOnt. (1 > (4)
pSB 1o d/" nSB (/1 )

which was originally proposed in Ref. [17]. Here, psp(u), i.e., the pressure value of the non-
interacting theory (the Stefan-Boltzmann (SB) limit), was obtained by the numerical integration of
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the number density of massless quarks. As for the trace anomaly, we utilized

3 1 ( dp <6S> N dk <6S> N aj <(?S> )
e—3p a— — a— — a—= — ,
NiN: \ dalcp \OB gy  dalicp\Ok[ gy 0alicp \OJ [ .
)
where the nonperturbative S-function was calculated in Ref. [20] as
adp/dalg=0.80,k=0.159 = —0.352, adk/da|g=0.80,k=0.150 = 0.0282. (6)

The results for the pressure are shown in the left panel of Fig. 3. In the hadronic phase, where
(ng) is consistent with zero, the pressure is also zero. Once the superfluid phase transition occurs,
the pressure increases monotonically. At 7T = 40 MeV (triangle-blue symbols), the pressure grows
sharply in the BEC phase and approaches the SB limit more closely in the high-density region. On
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Figure 3: Pressure (left panel) and trace anomaly (right panel) as a function of u. The right panel depicts
the first (circle-red symbol) and second (cross-blue symbol) terms in Eq. (5) at T = 40 MeV separately.

the other hand, we plotted the first (gluonic) term and minus the second (fermionic) term of the
trace anomaly (5) at T = 40 MeV as (e — 3p), (circle-red symbols) and —(e — 3p) s (cross-green
symbols), respectively, in the right panel of Fig. 3. Note that the second term takes negative values,
which have the sign flipped in the plot. Furthermore, we neglected the third term in Eq. (5) in
our analysis. Thus, the total trace anomaly is given by the circle-red data minus the cross-green
data. As can be seen from this plot, the trace anomaly is also zero in the hadronic phase. After
the superfluid phase transition, the trace anomaly reaches a maximum value and then decreases.
Notably, in the middle of the BCS phase, —(e — 3p) s becomes larger than (e — 3p),, causing the
trace anomaly to change from positive to negative.

We would like to discuss the results that were obtained thus far. First, let us consider why
the pressure value in the BCS phase at T = 40 MeV is larger than at T = 80 MeV. One would
expect that particles are thermally excited at higher temperatures, resulting in higher pressure. Our
results, however, show the opposite. In fact, the spatial volumes differ between these simulations:
we performed the simulation on lattices of size 324 for T = 40 MeV and 16 for T = 80 MeV. Thus,
the data for T = 80 MeV may be more severely affected by the finite volume effects. We consider
that such effects might lead to a smaller pressure in our data, especially at 7 = 80 MeV. As to how
to define the pressure on the lattice in a finite-density regime, furthermore, there is some room for
discussion [17].
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Additionally, in the thermodynamic limit at zero temperature, there is a relationship between

the trace anomaly and the u-derivative of the pressure 2,

d(p)_e=3p
du\p*] w0’

: (N

Our data are inconsistent with this equation since the trace anomaly changes its sign in the BCS phase
while p/u* increases monotonically. This also suggests that finite volume effects may influence
our data at least in the BCS phase.
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Figure 4: The pressure and internal energy around the BEC phase. The cyan and orange curves represent
the fitting functions for p/u® and e/u#, respectively, whose forms are given by the ChPT theory as shown in
Egs. (8) and (9).

If we focus on the BEC phase, on the other hand, our results for the chiral condensate, diquark
condensate, and sound velocity (to be shown later) are consistent with the predictions from ChPT [2].
It would therefore be worthwhile to fit the data for p and e in the BEC phase to the prediction of
ChPT [17],

2 2
My

pchpT = 4NfF2y2(1—#—;) : (8)
2 2

echpr = 4NfF2u2(1—;‘—;) (1+ %) ©)

to obtain the pion decay constant (F) in two-color QCD. Figure 4 depicts the ¢ dependence of p
and e both for the data and fitted results. The best fit values were obtained as F = 51.1(5) MeV
and F = 56.7(7) MeV from the fits of p/u? and e/u?, respectively. These values are similar to the
earlier result, F = 60.8(1.6) MeV, obtained in Ref. [21] from the fit of the lattice data for the quark
number density and the mixing angle between the diquark and chiral condensates around the phase
transition point predicted by the ChPT analysis.

Finally, we plotted the data for the speed of sound at 7 = 40 MeV and 7' = 80 MeV in Fig. 5,
where we evaluated

Ap(w) _ p(u+Au) - p(p—Ap)
Ae(p)  e(u+Ap) —e(p—Aw)

2E. I. would like to thank Dr. Yuki Fujimoto for pointing out this discussion.

ca(p)/c* = (10)
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Figure 5: The squared sound velocity at 7 = 40 MeV and T = 80 MeV. The cyan curve is the prediction
of ChPT given by ¢2/c? = (1 — u/u*)/(1 + 3u*/u*). The horizontal line (orange) depicts the conformal
bound, ¢2/c* = 1/3.

at fixed temperature. The prediction of the ChPT, which was shown as cyan-curve, is that c2/c?
approaches 1 with increasing density. Our data are consistent with this prediction in the low-density
region of the BEC phase. In the high-density region of the BEC phase, however, the values become
smaller than those predicted by ChPT. While this behavior remains in the BCS phase, the conformal
bound (shown as orange-line), known as cf /c% = 1/3, is nevertheless clearly exceeded. Before
our study [1], for instance, a number of finite temperature studies at u = 0 had existed, but no
first-principles calculation in any QCD-like theory had demonstrated a violation of this conformal
bound. Itis a characteristic property of low-temperature and high-density QCD-like theories, which
could help to support earlier suggestions of such a violation from neutron star phenomenology and
effective model analyses [22-28].

4. Summary and related works

We investigated the phase structure and the EoS for dense two-color QCD at low temperatures:
T =40 MeV (32* lattice) and T = 80 MeV (16* lattice). From a comparison of various observables
between the two temperatures, we found that the hadronic-matter phase shrinks as the temperature
decreases and that the diquark condensate shows more of a quadratic scaling tendency in the BCS
phase, which is predicted by the weak coupling expansion. Furthermore, careful analyses confirm
that the topological susceptibility is independent of y even in a high-density regime. We also
compared the data obtained at the two temperatures for the pressure, internal energy, and sound
velocity as a function of . The pressure increases around the hadronic-superfluid phase transition
more rapidly at the lower temperature, while the temperature dependence of the speed of sound
is invisible. Breaking of the conformal bound was also confirmed thanks to sufficiently small
statistical errors at T = 40 MeV. It is interesting to note that recent lattice results for three-color
QCD with isospin chemical potential y; confirm that the speed of sound agrees with ChPT in a
relatively small u; regime of the pionic BEC phase and subsequently violates the conformal bound
at higher isospin densities [6—8]. As for the upper bound of the speed of sound, a recent paper [29]
proposed a new value of the bound from a hydrodynamics analysis, which gives c2/c? < 0.781.
Our data also satisfy this bound.
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It is worth mentioning several recent analytical studies that consider the origin of the large
value of the speed of sound and the negativity of the trace anomaly. It has been pointed out that
the presence of a pairing gap tends to increase the speed of sound compared with the perturbative
analysis [28, 30, 31]. According to a recent study by Fujimoto [32], the pressure in three-color
isospin QCD approaches the SB limit from above due to the gap. In contrast, in dense two-color
QCD where corrections from the gap are relatively small, the pressure is only slightly modified from
perturbation theory, and hence the pressure approaches the SB limit from below. Such predictions
look consistent with the high-density lattice results for three-color isospin QCD (Ref. [8]) and for
dense two-color QCD shown here. Furthermore, Fukushima and Minato have conducted studies
on the negativity of the trace anomaly for dense two-color QCD and three-color isospin QCD, as
well as two-flavor color-superconducting (2SC) matter, using a unified treatment of the perturbative
gap and the correction due to instanton effects, and thereby they have revealed differences among
these systems [33]. In particular, 2SC matter shows a qualitatively different behavior for the
speed of sound and the trace anomaly as a function of u from the others. On the other hand, the
constraints from neutron star observational data, which can be effectively regarded as those from
real finite-density QCD, suggest that the conformal bound is violated [34, 35]. In conjunction with
the results of these analytical and phenomenological studies, it would be fascinating to delve into
the similarities and differences among dense two-color QCD and three-color isospin systems, let
alone, three-color QCD matter in our Universe.
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