
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
5
9

First-order phase transition in dynamical 3-flavor QCD
at imaginary isospin

Gergely Endrődi,𝑎,𝑏,∗ Guy D. Moore𝑐 and Alessandro Sciarra𝑑

𝑎Institute for Theoretical Physics, ELTE Eötvös Loránd University,
Pázmány P. sétány 1/A, H-1117 Budapest, Hungary

𝑏Fakultät für Physik, Universität Bielefeld,
Universitätsstraße 25, D-33615 Bielefeld, Germany

𝑐Institut für Kernphysik, Technische Universität Darmstadt,
Schlossgartenstraße 2, D-64289 Darmstadt, Germany

𝑑Institut für Theoretische Physik, Goethe-Universität Frankfurt,
Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
E-mail: gergely.endrodi@ttk.elte.hu, guy.moore@physik.tu-darmstadt.de,
sciarra@itp.uni-frankfurt.de

We revisit QCD with three mass-degenerate quark flavors at an imaginary isospin chemical
potential set to 4𝜋𝑇/3. This choice corresponds to a special point in the parameter space, where
the theory possesses an exact Z(3) center symmetry. Through a finite-size scaling analysis, we
demonstrate that in this case the finite temperature QCD transition is of first order and entails
singular behavior both in the Polyakov loop and in the quark condensate. Our results are based on
simulations with stout-smeared staggered quarks and a dedicated multi-histogram analysis.
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1. Introduction

One of the most successful approaches to study QCD at nonzero density involves simulations
at purely imaginary values of the chemical potentials, a region free of the complex action problem.
QCD in the presence of imaginary chemical potentials also exhibits a rich phase structure that has
non-trivial implications for the physics at real densities (see e.g. [1–4]). Some of these aspects
may already be understood using perturbation theory – and are exemplified by the well-known
Roberge-Weiss phase transitions at high temperature and imaginary baryon density [5].

The phase structure of QCD with three quark flavors can be described completely by three
independent chemical potentials, i.e. an isospin 𝜇𝐼 and a strangeness 𝜇𝑆 chemical potential besides
the baryon one 𝜇𝐵. The isospin axis is special in the sense that it is free of the complex action
problem even for 𝜇𝐼 ∈ R and has enabled the precise determination of the phase diagram in the last
years [6, 7]. The determination of the equation of state in this plane [8–10] is also of interest as it
may for example serve as a non-trivial bound for the baryonic equation of state [11, 12].

In this proceedings article, we consider three-flavor QCD at nonzero imaginary chemical
potentials. This theory constitutes a generalization of the standard Roberge-Weiss setup and allows
to explore the phase structure similarly to the two-flavor case [13]. More importantly, for the
specific choice 𝜇𝐼 = 𝑖4𝜋𝑇/3, this system possesses an exact center symmetry [14, 15] and is in
general expected to exhibit a first-order deconfinement phase transition. Various aspects of this
theory have already been investigated on the lattice [16, 17], within effective QCD models [18, 19]
and analytically using the ’t Hooft anomaly [20, 21]. Using a finite size scaling analysis and a
multi-histogram reweighting method, we demonstrate that a first-order transition is indeed present
and elaborate on its impact on fermionic observables and its dependence on the quark masses.

2. Lattice setup and observables

We consider the QCD partition function represented by the path integral for three flavors of
rooted staggered quarks,

Z =

∫
D𝑈𝜈 𝑒

−𝛽𝑆𝑔
∏

𝑓 =𝑢,𝑑,𝑠

det
[
/𝐷 (𝜇 𝑓 ) + 𝑚

]1/4
, (1)

where 𝑆𝑔 is the tree-level improved Symanzik action, 𝛽 = 6/𝑔2 the inverse gauge coupling and /𝐷 the
twice stout-smeared staggered Dirac operator. Our lattices have geometry 𝑁3

𝑠 × 𝑁𝑡 , corresponding
to a physical volume 𝑉 = (𝑁𝑠𝑎)3 and a temperature 𝑇 = 1/(𝑁𝑡𝑎), where 𝑎 is the lattice spacing.
The masses of all three quarks are equal, 𝑚 ≡ 𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠 and run as a function of 𝛽 along
the line of constant physics, which we take from full QCD at the physical point [22]. Most of our
simulations are performed at the physical strange quark mass 𝑚 = 𝑚

phys
𝑠 , but we will also consider

ligher and heavier quarks.
The chemical potentials for the three flavors are set to a purely imaginary isospin chemical

potential 𝜇𝐼 = 𝑖4𝜋𝑇/3, corresponding to

𝜇𝑢 = 𝑖2𝜋𝑇/3, 𝜇𝑑 = −𝑖2𝜋𝑇/3, 𝜇𝑠 = 0 . (2)
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For this particular choice, the theory is invariant under a simultaneous center transformation and a
permutation of the three mass-degenerate quark flavors [14, 15]. This fermionic theory therefore
possesses an exact Z(3) center symmetry, just like pure gauge theory, for which the order parameter
is the Polyakov loop,

𝑃 =
1
𝑉

∑︁
n

Tr
𝑁𝑡−1∏
𝑛4=0

𝑈4(n, 𝑛4) , (3)

where 𝑈𝜈 denote the twice stout-smeared gluon links that enter the Dirac operator.
Pure SU(3) gauge theory exhibits a first-order deconfinement phase transition associated with

the spontaneous breaking of this center symmetry, where the Polyakov loop is discontinuous.
Similarly, the three-flavor system at the imaginary chemical potentials (2) is expected to exhibit a
first-order deconfinement phase transition. Owing to the exact center symmetry, the expectation
value of 𝑃 vanishes at any temperature. To characterize the transition, we therefore consider the
‘rotated’ Polyakov loop �̄� [23]. This is obtained by realizing for each gauge configuration the center
transformation that rotates the Polyakov loop to the real sector, −𝜋/3 < arg 𝑃 ≤ 𝜋/3, and taking its
real part. Below we will also consider higher central moments 𝜅𝑛 ≡ ⟨(�̄� − ⟨�̄�⟩)𝑛⟩ of the rotated
Polyakov loop distribution. These define the susceptibility, the skewness and the kurtosis of �̄�,

𝜒�̄� = 𝑉𝜅2, 𝑠�̄� =
𝜅3

𝜅
3/2
2

, 𝐵�̄� =
𝜅4

𝜅2
2
. (4)

3. Results

We begin by presenting the Monte Carlo history of the (unrotated) Polyakov loop in the left
panel of Fig. 1 on our 163 × 6 ensemble at 𝛽 = 3.85, corresponding to a high temperature. We can
clearly observe frequent jumps between the three equivalent center sectors. This is further visualized
in the right panel of the same figure, where the scatter plot of 𝑃 is shown in the complex plane. Here,
different values of 𝛽, representing different temperatures, are compared. The figure demonstrates

Figure 1: Left panel: Monte Carlo history of the real (blue) and imaginary (green) part of the Polyakov loop
on a 163 × 6 ensemble at high temperature. Frequent jumps between the center sectors are observed. Right
panel: scatter plot of the Polyakov loop in the complex plane on 163 × 6 ensembles at different temperatures.
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Figure 2: Left panel: histogram of the rotated Polyakov loop on our 163 × 6 ensembles, with the same color
coding for the temperatures as in the right panel of Fig. 1. Right panel: temperature-dependence of the
rotated Polyakov loop expectation value, together with an interpolation obtained using the multi-histogram
method on our 203 × 6 lattices.

the abrupt change in the distribution, evolving from a center-symmetric vacuum around 𝑃 = 0 to
a spontaneously broken distribution with the three equivalent center sectors. Notice that ⟨𝑃⟩ = 0
holds for all temperatures.

We proceed by showing the histogram of the rotated Polyakov loop in the left panel of Fig. 2,
again for the 163 × 6 ensemble. The three colors represent 𝛽 = 3.788, 𝛽 = 3.812 and 𝛽 = 3.837,
analogously to the colors used in the right panel of Fig. 1. Here the transition is captured more
transparently, with the histogram of �̄� interpolating between the confined phase (�̄� ≈ 0) and the
deconfined one (�̄� ≠ 0). Around the transition temperature, a double-peak structure starts to form,
which becomes more prominent for larger volumes. At the same time, the mean �̄� in the confined
phase also approaches zero in the thermodynamic limit, which we will return to below.

The behavior of the histograms in the thermodynamic limit requires very large statistics. Here
we focus instead on the moments (4). In the right panel of Fig. 2 we show the expectation value ⟨�̄�⟩
as a function of 𝛽. The identification of the transition is facilitated by an interpolation of our lattice
data using the multi-histogram method [24]. This method corresponds to a weighted averaging
of reweightings from each simulation point. Since in our simulations, the quark masses are tuned
along the LCP, 𝑚(𝛽), the reweighting in 𝛽 also needs to be complemented by a reweighting in 𝑚.
The latter we perform to leading order, i.e. we expand the logarithm of the reweighting factor to
linear order in the quark mass difference. Explicitly, to reweight from a simulation point 𝛽 to a new
point 𝛽′, the reweighting factor takes the form,

𝑊 (𝛽 → 𝛽′) ≈ exp
[
−(𝛽′ − 𝛽) ·

(
𝑆𝑔 −

𝜕𝑚

𝜕𝛽

𝑉

𝑇
�̄�𝜓

)]
, (5)

where 𝑆𝑔 and �̄�𝜓 are the values of the gauge action and the quark condensate. The latter has the
form

�̄�𝜓 =
1
4
𝑇

𝑉

∑︁
𝑓 =𝑢,𝑑,𝑠

Tr
[
/𝐷 (𝜇 𝑓 ) + 𝑚

]−1
, (6)

which is also invariant under center transformations [15]. The function 𝜕𝑚/𝜕𝛽 is taken from the
LCP, determined at the physical point.
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Figure 3: Moments of the distribution of the rotated Polyakov loop as a function of 𝛽 for different volumes.
The panels show ⟨�̄�⟩ (top left), 𝜅2 (bottom left), 𝑠�̄� (top right) and 𝐵�̄� (bottom right).

The multi-histogram method is particularly suited to reweighting higher moments of the �̄�

distribution in 𝛽 and therefore to more closely analyzing the transition. Fig. 3 shows the mean, the
variance, the skewness and the kurtosis of the rotated Polyakov loop as a function of 𝛽 for different
volumes ranging from 163 × 6 to 323 × 6. The expectation value ⟨�̄�⟩ reveals a quick approach of
the observable towards zero in the confined phase and a characteristic sharpening of the transition
as 𝑉 → ∞. The critical coupling is around 𝛽𝑐 ≈ 3.835, which we will determine below using
the skewness. The variance 𝜅2 also shows clear signatures of a real phase transition, featuring a
narrower and narrower peak towards the thermodynamic limit. Note that the susceptibility is related
to 𝜅2 as in Eq. (4), therefore the fact that the peak height is roughly volume-independent translates to
the scaling 𝜒�̄� ∝ 𝑉 for the susceptibility peak. This is a telltale sign of a first-order phase transition.

The skewness of the �̄� distribution is also observed to feature an analogous sharpening and
crosses zero at 𝛽𝑐 = 3.83..(..), which we identify with the critical coupling. Finally, the kurtosis is
found to have large uncertainties, so that we cannot make definite conclusions about its behavior.
Nevertheless, 𝐵�̄� is observed to be consistent with unity at 𝛽𝑐. All in all, we observe strong
indications for the first-order nature of the transition at this lattice spacing.

The behavior of fermionic observables around this deconfining phase transition is also of
interest. Unlike pure gauge theory, the system at hand contains light fermions that also contribute

5
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to thermodynamics in a non-trivial way. Therefore, we investigate the quark condensate (6) next.
Here, the reweighting becomes slightly more complicated. Note that since the �̄�𝜓 operator itself
depends on the quark mass, its leading-order reweighting from 𝛽 to 𝛽′ involves the evaluation of
the operator at the shifted coupling. This is again performed in a leading-order expansion, which
involves the connected susceptibility,

�̄�𝜓(𝛽′) ≈ �̄�𝜓(𝛽) + (𝛽′ − 𝛽) · 𝜕𝑚
𝜕𝛽

𝜒�̄�𝜓, 𝜒�̄�𝜓 =
𝜕�̄�𝜓

𝜕𝑚
= −1

4
𝑇

𝑉

∑︁
𝑓 =𝑢,𝑑,𝑠

Tr
[
/𝐷 (𝜇 𝑓 ) + 𝑚

]−2
. (7)

The left panel of Fig. 4 shows ⟨�̄�𝜓⟩ interpolated in 𝛽 using the multi-histogram method for
different volumes. Notice that this is a bare observable and is therefore subject to additive and
multiplicative renormalization. Nevertheless, the imprint of the deconfinement phase transition is
still visible in ⟨�̄�𝜓⟩ via the emerging discontinuity at the critical gauge coupling as 𝑉 → ∞.

The natural question to ask at this point is to what extent this behavior may be interpreted
as a chiral transition. Our analysis so far was carried out at the physical strange quark mass
𝑚 = 𝑚

phys
𝑠 . The general expectation for the presence of a first-order phase transition is, however,

independent of the actual quark mass value, as long as we have three degenerate flavors and the
imaginary chemical potentials are assigned as in Eq. (2). To assess the dependence of the results
on the mass, we perform one further scan on the 163 × 6 ensemble at the physical light quark
mass, 𝑚 = 𝑚

phys
𝑢𝑑

= 𝑚
phys
𝑠 /28.15 [22] as well as at three times the physical strange quark mass,

𝑚 = 3 ·𝑚phys
𝑠 . The 𝛽-dependence of the rotated Polyakov loop is plotted in the right panel of Fig. 4.

Besides the qualitatively equivalent behavior in all cases, we observe a pronounced dependence
𝛽𝑐 (𝑚).

In order to compare the critical temperatures in a transparent manner, we need to work in terms
of dimensionless combinations. To this end, we choose the 𝑤0 scale [25] determined from the
Wilson flow [26]. We measured 𝑤0/𝑎 on 244 lattices at zero chemical potentials and at the critical
inverse gauge couplings. We find the values for 𝑇𝑐𝑤0 given in Tab. 1. It is instructive to compare
these to the value of 𝑇𝑐𝑤0 = 0.2507(2) in pure gauge theory [27] as well as to the approximate
value 𝑇𝑐𝑤0 ≈ 0.14 that it takes at the crossover transition in physical 2 + 1-flavor QCD [25].
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Figure 4: Left panel: expectation value of the quark condensate as a function of 𝛽 for different volumes.
Right panel: 𝛽-dependence of the rotated Polyakov loop on the 163 × 6 ensemble for three different quark
masses.
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𝑚𝑢,𝑑,𝑠 𝑚
phys
𝑢𝑑

𝑚
phys
𝑠 3 · 𝑚phys

𝑠

𝑇𝑐𝑤0 0.239(1) 0.248(1) 0.2505(5)

Table 1: Measurements of the 𝑤0 scale on 244 lattices at 𝜇 𝑓 = 0 at the critical couplings inferred from finite
temperature 163 × 6 ensembles.

We may collect all this information in the phase diagram of the theory. This is visualized in Fig. 5
in the temperature – isospin chemical potential – quark mass space. This three-dimensional phase
diagram exhibits the exact center symmetry on both of its back-planes: the one at 𝜇𝐼/𝑇 = 𝑖4𝜋/3 and
the one at 𝑚 = ∞. The first-order deconfinement phase transition that we observed at 𝜇𝐼/𝑇 = 𝑖4𝜋/3
and 𝑚 = 𝑚

phys
𝑠 – and expect to persist for practically any nonzero quark mass – is therefore

continuously connected to the first-order region at 𝜇𝐼 = 0 and high quark masses. The latter
corresponds to the section of the diagonal in the upper right corner of the standard Columbia plot
(see e.g. [28]). This first-order transition terminates in a Z(2) second-order point, which becomes a
Z(2) line in Fig. 5. For even lower quark masses, the transition is an analytic crossover. Following

Figure 5: Phase diagram of three-flavor QCD in the space spanned by the temperature normalized by 𝑤0,
the (squared) isospin chemical potential and the (degenerate) quark mass. The yellow area and orange lines
indicate first-order phase transitions, the blue line a second-order Z(2) phase transition and the dashed lines
crossovers. The vertical yellow area corresponds to a first-order transition separating deconfined phases with
different Polyakov loop sectors, while the mostly horizontal area denotes the transition between confined and
deconfined phases. Thus, the green line constitutes a line of first-order triple points, on which our simulation
points also lie (green dots).
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Tab. 1 and the above quoted values, we have also sketched the qualitative behavior of the transition
temperature (in units of 1/𝑤0) in the figure.

Finally, we note that changing the imaginary isospin chemical potential in the deconfined,
high-temperature phase at 𝜇𝐼/𝑇 = 𝑖4𝜋/3 realizes yet another first-order phase transition. For 𝜇𝐼

smaller than this value, the preferred Polyakov loop sector is the real one (just like at 𝜇𝐼 = 0),
while for slightly larger values the complex Polyakov loop sectors are favored and a remaining
Z(2) symmetry is intact. The yellow vertical area in Fig. 5 therefore separates these two different
deconfined phases. In the two-flavor theory, the associated Roberge-Weiss-type transitions have
been mapped out recently [13, 29].

4. Conclusions

In this proceedings article we investigated three-flavor QCD with degenerate quark masses
at a special value of the imaginary isospin chemical potential, where the theory exhibits an exact
Z(3) center symmetry. We demonstrated that in this system, deconfinement is realized via a first-
order phase transition. The analysis was facilitated by implementing a multi-histogram method
for the interpolation of our observables, which also required a leading-order reweighting in the
quark masses. The discontinuity in the Polyakov loop was shown to leave its imprint in the quark
condensate and we argued that this behavior continues to hold for any nonzero quark mass values.
Finally, we sketched the qualitative behavior of the QCD phase diagram in the mass-chemical
potential-temperature space. Our results constitute a non-trivial example for a center-symmetric
fermionic theory that exhibits a first-order phase transition.
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