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The first-order confinement transition of a strongly coupled composite dark matter theory can
provide a possible source of gravitational waves in the early universe. In this work, on behalf of
the Lattice Strong Dynamics (LSD) Collaboration, we present our recent investigation on the finite
temperature confinement transition of the one-flavor SU(4) dark gauge theory named Hyper Stealth
Dark Matter (HSDM). The dark matter candidate in this theory is a composite bosonic baryon
and can have a remarkably low mass of a few GeV. We expect the finite temperature transition to
be first-order over at least in some finite range of fermionic masses and to be a potential source
of observable gravitational radiation. The finite temperature simulation of one-flavor SU(4) is
done by using Möbius Domain wall fermions. The order of the transition and its fermionic mass
dependence are explored by monitoring the Polyakov loop, chiral condensate and topological
charge using three lattice volumes at 𝑁𝑡 = 8.
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1. Introduction

In recent years, the early universe has become a phenomenological laboratory to study new
physics. In Ref. [1], the one-flavor SU(4) gauge theory was proposed as a model for the dark matter,
which was named as the Hyper Stealth Dark Matter (HSDM). The dark matter candidate in this
model is the lightest baryon composed of four dark-quarks, which can be as light as a few GeV. In the
high-temperature phase of the universe, the HSDM is in a dark-quark-dark-gluon plasma, and as the
universe cools down, the HSDM undergoes a phase transition into a confined phase of dark-hadrons.
This phase transition, which is triggered by non-perturbative dynamics of the strongly-interacting
theory, gives us another phenomenological interest as it can generate a stochastic background of
gravitational waves if the transition is first-order [2] (see, e.g., [3, 4] for reviews; a possibility of
detecting gravitational waves from crossover is also discussed [5]).

In this contribution, we study the confinement transition in the strongly-interacting SU(4) sector
of this one-flavor model as a continuation of our previous report [6]. In particular, we determine the
order of the phase transition with various dark-quark masses: 𝑎𝑚 ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4,∞},
including the quenched theory, 𝑎𝑚 = ∞. We use the Wilson gauge action (with the conventional
coupling 𝛽) and the Möbius Domain Wall Fermion (MDWF) [7, 8]. We used three lattice volumes
𝑁3
𝑠 × 𝑁𝑡 with 𝑁𝑠 =16, 24, and 32 at fixed 𝑁𝑡 = 8 and 𝐿𝑠 = 16. Gauge configurations are generated

by the HMC with the exact one flavor algorithm (EOFA) [9]. Calculations are performed on LLNL
clusters using Grid [10].

As is the case for the one-flavor theory with 𝑁𝑐 = 3 [11], we expect the deconfinement transition
to be first-order with heavy dark-quark masses and crossover with light dark-quark masses, separated
by a second-order transition point. We study the critical coupling 𝛽 = 𝛽crit for various dark-quark
masses by using the Polyakov loop as the order parameter. Note that, in the one-flavor theory, there
is no spontaneous chiral symmetry breaking as 𝑈𝐴(1) is broken explicitly by the chiral anomaly.
Accordingly, the lightest meson 𝜂′ acquires a mass of the order of the intrinsic scale of the theory,
and it is expected to have no chiral phase transition [11, 12]. In this regard, we also investigate the
chiral condensate and the topological charge around the confinement transition point 𝛽crit.

2. Möbius Domain Wall Fermion

As we have mentioned in the Introduction, the relation between chiral behavior and the decon-
finement transition is of theoretical interest. In this study, we use the Möbius domain-wall fermion
(MDWF) [7, 8] to systematically control the chiral symmetry breaking of the theory. As is well
understood (see, e.g., Ref. [13] and reference therein), the breaking of the chiral symmetry due to
finite 𝐿𝑠 for domain-wall fermions can be quantified by the residual mass 𝑚res, which is related
to the small eigenvalues of the hermitian Dirac operator: 𝐻4(𝑀5) = 𝛾5𝐷̸𝑊 (−𝑀5), where 𝑀5 is
the domain-wall height. In this section, we briefly describe this residual breaking of the chiral
symmetry in our ensembles.

Figure 1 shows the first ten smallest magnitude eigenvalues of 𝐻4(𝑀5) as a function of 𝑀5

with the bare quark mass 𝑎𝑚 = 0.1. We show results for the three representative cases with
𝑎𝑚 = 0.1: 𝛽 = 10.6, which corresponds to the deconfined phase; 𝛽 = 10.8, around the critical
point; and 𝛽 = 11.0, the confined phase. The correspondence between 𝛽 and the phases will be
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Figure 1: The ten smallest magnitude eigenvalues of the four-dimensional hermitian Dirac operator:
𝐻4 (𝑀5) = 𝛾5𝐷̸𝑊 (−𝑀5), calculated with ten thermalized configurations for 𝛽 = 10.6, 10.8, 11.0 (from
left to right) with the volume 243 ×8 and the bare quark mass 𝑎𝑚 = 0.1. The red vertical dotted line indicates
𝑎𝑀5 = 1.8, which is the parameter used in the HMC for 𝑎𝑚 = 0.1 and 0.4.
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Figure 2: (Left) The effective residual mass 𝑎𝑚eff
res (𝑥) = ⟨𝐽5𝑞 (𝑥)𝑃(0)⟩/⟨𝑃(𝑥)𝑃(0)⟩ as a function of the

spatial separation 𝑥, evaluated at 𝛽crit for each quark mass. (Right) The residual mass 𝑚res determined from
the midpoint of 𝑎𝑚eff

res (𝑥), plotted as a function of 𝛽. Both plots are calculated with the 243 × 8 ensembles.

given in Sec. 4. The red vertical line in the figure marks 𝑀5 = 1.8, which is used in the HMC
to generate the gauge configurations for 𝑎𝑚 = 0.1 and 0.4. For simulations with other quark
masses 𝑎𝑚 ∈ {0.05, 0.2, 0.3}, we set 𝑀5 = 1.5 to improve chiral behavior, based on Fig. 1. To
further confirm that the breaking of the chiral symmetry according to finite 𝐿𝑠 is well controlled,
we calculate the residual mass from the axial Ward identity [14]: 𝑚res = lim𝑥→∞⟨𝐽5𝑞 (𝑥)𝑃(0)⟩/
⟨𝑃(𝑥)𝑃(0)⟩, where 𝑃 is the pseudoscalar meson operator and 𝐽5𝑞 the five-dimensional flavor non-
singlet axial current. In the left panel of Fig. 2, we show the effective residual mass 𝑚eff

res as a
function of the spatial separation 𝑥 for various quark masses at the critical coupling 𝛽crit which will
be determined in Sec. 4. The value of 𝑚res is given at the midpoint. The effect of of the residual
mass compared to the bare quark mass, 𝑚res/𝑚, is sub-percent for the parameters of interest and is
therefore negligible.
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Figure 3: Monte Carlo time history of the Wilson-flowed topological charge 𝑄𝑊 , and the correspond-
ing histogram calculated at 𝛽crit for the masses: (left) 𝑎𝑚 = 0.1 and (middle) 𝑎𝑚 = 0.4. In the
right panel, we show the topological susceptibility as a function of 𝛽 for the six different quark masses:
𝑚 = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4. Vertical dotted lines are drawn at 𝛽 = 𝛽crit to indicate the transition point
for each mass with the same color used for the susceptibility.

3. Gauge ensemble

To ensure thermalization, we create two streams with a cold start from the unit gauge field
(𝑈𝜇 = 1) and a hot start from a random gauge field for each 𝛽 and the quark mass 𝑎𝑚. The sample
size varies from 3000 to 𝑂 (105) (for the quenched case, up to 𝑂 (106)), taking into account the
diverging autocorrelation of the Polyakov loop and the topological charge. Figure 3 shows the
Monte Carlo time history and the histogram of the Wilson-flowed topological charge 𝑄𝑊 , where
we adopt the clover leaf definition for the field strength. The Wilson flow time is fixed to 2.0 with
the step size 0.01. Though we see long autocorrelation, the sample size is large enough to observe
a decent number of tunnelings in the ensemble, and as a result we obtain a symmetric distribution.
With the current statistics, we do not observe a peak structure for the chiral susceptibility 𝜒𝑄𝑊

(see
the right-most panel in Fig. 3) around the critical coupling 𝛽crit.

4. Deconfinement transition

We study the Polyakov loop (𝑃𝐿) as an order parameter for the deconfinement phase transition.
Though the dynamical quark explicitly breaks the center symmetry, we expect it to still serve as an
order parameter for large quark masses. Figure 4 shows the expectation value of the absolute value,
⟨|𝑃𝐿 |⟩, as a function of 𝛽 for various quark masses. The vanishing expectation values ⟨|𝑃𝐿 |⟩ = 0
at small 𝛽 indicate the confined phase, while the nonzero values ⟨|𝑃𝐿 |⟩ ≠ 0 at large 𝛽 signify the
deconfined phase. A diverging slope in the transition region in the infinite volume limit implies a
phase transition.

To further discuss the phase transition, we plot in Fig. 5 the susceptibility of the Polyakov loop,
which shows a peak structure at the transition region. The order of the phase transition can then be
identified by studying the finite volume scaling of the height 𝜒max

|𝑃𝐿 | of the peak, for which we make
the ansatz: 𝜒max

|𝑃𝐿 | ∝ 𝑁3𝑏
𝑠 . If the phase transition is first-order, the exponent 𝑏 is expected to be 1

[15, 16]. Although the notion of the critical temperature is obscure when the transition is crossover,
we write as 𝛽crit the location of the peak in the susceptibility. As a preliminary study, we here
determine the peak value 𝜒max

|𝑃𝐿 | by fitting the bell-shaped peak in the Gaussian form. The obtained
values for the exponent are 𝑏 = 0.46(10) for 𝑎𝑚 = 0.2, 𝑏 = 0.49(19) for 𝑎𝑚 = 0.3, 𝑏 = 1.02(19)
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Figure 4: Polyakov Loop absolute value versus 𝛽 on 243 × 8 ensembles.

for 𝑎𝑚 = 0.4, and 𝑏 = 1.009(23) for the quenched theory. We do not use the results of 163 × 8 in
estimating 𝑏 for 𝑎𝑚 = 0.2, 0.3 as it is deviates significantly from the scaling ansatz, in relation to
which we can observe in Fig. 5 that 163 × 8 gives a significantly different value of 𝛽crit.1 for 163 × 8
with 𝑎𝑚 = 0.4. Our analysis implies that the second-order point lies somewhere around 𝑎𝑚 = 0.3
and 0.4. Most importantly, we find a finite dark-quark mass that is consistent with a first-order
transition that can source gravitational waves.

It is interesting to see how the distribution of the Polyakov loop evolves across the phases.
Figure 6 shows the scattered plot of the Polyakov loop in the complex plane before, in the middle
of, and after the transition region, from left to right. In the quenched case (bottom row), where
the 𝑍4 symmetry is preserved classically, we observe that the distribution of the Polyakov loop
exhibits the 𝑍4 symmetry in the confined phase (bottom left) and it is broken spontaneously in the
deconfinement phase (bottom right). Correspondingly, we observe ⟨𝑃𝐿⟩ = 0 in the confined phase
and ⟨𝑃𝐿⟩ ≠ 0 in the deconfined phase. With the dynamical dark-quarks (top and middle rows),
where the 𝑍4 symmetry is explicitly broken, we see that the distribution in the confined phase is
localized around zero (top/middle left), resulting in the expectation value ⟨𝑃𝐿⟩ = 0. As we increase
𝛽, we observe a departure from the origin, moving towards the positive real axis (top/middle right),
which we interpret as that the system has transited into the deconfined phase, giving ⟨𝑃𝐿⟩ ≠ 0.

To further scrutinize the transition, we look into the histogram. In Fig. 7, we plot the Monte
Carlo time history and the histogram of |𝑃𝐿 | at 𝛽crit for 𝑚 = 0.2 (in the crossover region) and
𝑚 = 0.4 (in the first-order region). Red and blue colors represent the hot and cold start streams,
respectively. The first-order nature of the phase transition at 𝑎𝑚 = 0.4 can be seen as the double-
peaked structure in the histogram. We can further confirm the tendency that the separation between
the two peaks becomes obscure as we decrease the dark-quark mass.

1We comment that the 163 × 8 ensembles shown in this figure are generated with 𝑀5 = 1.8 while the 243 × 8 and
323 × 8 ensembles with 𝑀5 = 1.5. While the parameters are to be unified, we expect the resulting difference in the
observable to be small as described in Sec. 2.
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Figure 5: The Polyakov loop susceptibility normalized by the spatial volume, 𝜒|PL |/𝑉 , where 𝑉 = 𝑁3
𝑠 .

Green, blue, and red points show the results for 163 × 8, 243 × 8, and 323 × 8, respectively. The ensembles
with hot and cold starts are combined in this plot. As a preliminary study, the bell-shaped peaks are fitted in
the Gaussian form, whose results are drawn with dashed lines. We see that the peak value of the susceptibility
scales linearly with volume for 𝑚 = 0.4 and the quenched case, signifying first-order phase transition.

5. Chiral susceptibility

As mentioned in the Introduction, the chiral symmetry is broken in the one-flavor theory by the
axial anomaly. Consequently, unlike in QCD, chiral symmetry may not be restored in the large 𝛽

limit. By using the chiral condensate ⟨𝜓̄𝜓⟩ as the order parameter for the chiral phase transition, we
can check this numerically in our model. The top three panels in Fig. 8 show the behavior of ⟨𝜓̄𝜓⟩
around 𝛽crit for the masses 𝑎𝑚 = 0.01, 0.2, 0.4, drawn together with ⟨|𝑃𝐿 |⟩ for comparison. We
use a noisy estimator to calculate the condensate. It is interesting to observe a steep slope around
𝛽crit even for ⟨𝜓̄𝜓⟩. In the bottom three panels, we display the disconnected chiral susceptibility,
𝜒𝜓̄𝜓 = 𝑁3

𝑠𝑁𝑡 (⟨(𝜓̄𝜓)2⟩disc − ⟨𝜓̄𝜓⟩2), together with 𝜒|𝑃𝐿 | , in which the coincidental peak locations
can be confirmed (especially for 𝑎𝑚 = 0.2). Further study on their relative locations as well as
the finite volume scaling for the chiral susceptibility are interesting in order to understand the
non-perturbative dynamics of the theory. The study is in progress with improved statistics.

6. Conclusion and outlook

In this contribution, we gave an update from Ref. [6] on a strongly-interacting composite dark
matter theory, the HSDM [1]; an SU(4) gauge theory with one flavor of Möbius domain-wall
fermion. We explored the thermodynamics of this theory at various quark masses and 𝛽 values by
computing the topological charge, the Polyakov loop and the chiral condensate. We found that the
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Figure 6: The scattered plot of the spatially averaged Polyakov loop in the complex plane for the masses
𝑎𝑚 = 0.2, 0.4, and the quenched theory (from top to the bottom rows) on the 243 ×8 lattice. We choose three
𝛽 values for each 𝑎𝑚: below, on top of, and above the coupling 𝛽crit (from left to right).

transition is first-order at a large but moderate dynamical fermion mass. More detailed analysis
with improved statistics is in progress, as well as zero temperature ensemble generation at 𝛽crit for
scale-setting in the theory by measuring the SU(4) meson and baryon masses.
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