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First-order phase transitions in the early universe have rich phenomenological implications, such
as the production of a potentially detectable signal of stochastic relic background gravitational
waves. The hypothesis that new, strongly coupled dynamics, hiding in a new dark sector, could
be detected in this way, via the telltale signs of its confinement/deconfinement phase transition,
provides a fascinating opportunity for interdisciplinary synergy between lattice field theory and
astro-particle physics. But its viability relies on completing the challenging task of providing
accurate theoretical predictions for the parameters characterising the strongly coupled theory.
Density of states methods, and in particular the linear logarithmic relaxation (LLR) method, can
be used to address the intrinsic numerical difficulties that arise due the meta-stable dynamics in
the vicinity of the critical point. For example, it allows one to obtain accurate determinations
of thermodynamic observables that are otherwise inaccessible, such as the free energy. In this
contribution, we present an update on results of the analysis of the finite temperature deconfinement
phase transition in a pure gauge theory with a symplectic gauge group, 𝑆𝑝(4), by using the LLR
method. We present a first analysis of the properties of the transition in the thermodynamic limit,
and provide a road map for future work, including a brief preliminary discussion that will inform
future publications.
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1. Introduction

First-order phase transitions are characterised by the co-existence of phases for choices of the
control parameters in proximity of the transition. This hallmark leads to interesting consequences,
both phenomenologically and from a technical viewpoint. Phenomenologically, systems containing
first-order phase transitions in the early universe lead to the nucleation of bubbles in the false
vacuum, and the possible generation of a stochastic gravitational wave background [1–6]; see
Ref. [7] and references therein for further details. They can also give rise to the out-of-equilibrium
condition identified by Sakharov for baryogenesis [8]. In the early universe, the Standard Model of
particle physics predicts that no such phase transitions arise, as the electroweak symmetry breaking
and the chiral/confinement transition are both established to be smooth cross-overs, see Refs. [9, 10],
for a recent discussion of the status of the determination in QCD, see the review [11]. The first
detection of gravitational waves [12], and early hints pointing towards the possible detection of
long wave length gravitational waves[13], have driven a revival of interest in new dark sectors
arising in physics beyond the standard model (BSM), and revitalised the global effort to predict and
characterise first-order phase transitions in new theories, particularly in strongly coupled ones—see
for example Refs. [7, 14–18] and references therein.

Many BSM proposals contain a new strongly interacting sector, with new gauge interactions
and matter fields. These new gauge sectors are motivated as possible ways to resolve some of the
open questions left unanswered by the Standard Model, such as the existence of dark matter, or
the naturalness problem in the electroweak theory. Interest in 𝑆𝑝(2𝑁) gauge theories as the basis
for models to address these questions has led to a research programme, Theoretical Explorations
on the Lattice with Orthogonal and Symplectic groups (TELOS), that aims to study these theories
using lattice methods, see Refs. [19–37]. Gauge theories with 𝑆𝑝(2𝑁) group have also been studied
as models of dark matter in Refs. [38–45]. This contribution reports on recent advances towards
the characterisation of the finite temperature deconfinement phase transition in 𝑆𝑝(4) pure gauge
theory, using lattice field theory numerical methods.

These new gauge sectors, may be expected to undergo a deconfinement transition at the high
temperatures one expects in the early universe. The properties of the transition depend on both the
gauge symmetry and the matter content of the theory of interest, and their measurement is mired
by a number of non-trivial challenges—see the comprehensive discussion in the introduction of
Ref. [46], for theories with 𝑆𝑈 (3) gauge group. In Yang-Mills theories, the pure gauge dynamics of
the theory, in the absence of fermion matter fields, is believed to lead to a first-order transition in all
𝑆𝑈 (𝑁𝑐) and 𝑆𝑝(2𝑁)—with the notable exception of 𝑆𝑝(2) = 𝑆𝑈 (2)—as well as in the exceptional
gauge theory 𝐺 (2)—see Refs. [47–52] and references therein.

When studying strongly coupled field theories on the lattice, standard importance sampling
approaches face a major technical limitation, when used to explore the dynamics in proximity of the
phase transition. This is an intrinsic drawback arising from metastable dynamics connected with the
phase co-existence around the critical point. The difficulty is that in order to obtain accurate results,
one must ensure the whole phase space is accurately sampled, but the metastability introduces
global energy barriers that may be challenging to overcome in local update algorithms. This may
result in the configuration updates becoming stuck in one (metastable) vacuum, with tunnelling
between vacua becoming exponentially suppressed, and hence may either lead to uncontrolled
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systematic errors, or to the demand for unrealistically large computational resources being needed
to restore ergodicity. This problem becomes intractable in the infinite volume limit in which the
tunnelling time between vacua diverges. Our methodology of choice, to overcome this limitation,
is the adoption of the Linear Logarithmic Relaxation method (LLR), introduced in Ref. [53]—see
also Refs. [54–56]. We will discuss the main ideas that make this approach promising, later in this
document.

The results we present here are part of an ongoing programme of study of first-order decon-
finement phase transition in non-Abelian Yang-Mills theories using the LLR method. Our previous
results on 𝑆𝑈 (3) pure gauge theory can be found in Ref. [57]—see also Refs. [58, 59]. Other
finite-temperature studies using this general methodology exist also for 𝑆𝑈 (4) [60, 61] and general
𝑆𝑈 (𝑁) [62, 63]. An extended, detailed exposition of both intermediate and final results presented
here can be found in Ref. [64], but in this contribution we add a brief discussion on the direction of
future work.

2. First order phase transitions, lattice field theory and the LLR method

In order to study numerically the strongly coupled dynamics of the 𝑆𝑝(4) Yang-Mills theory
we use lattice field theory. The position in Euclidean spacetime, 𝑥, is discretised onto a hyper-
cubic lattice with periodic boundary conditions in all directions. We denote the lattice size as
�̃� = 𝑎4𝑁𝑡 ×𝑁3

𝑠 , where 𝑎 is the lattice spacing, and 𝑁𝑡 and 𝑁𝑠 are the number of sites in the temporal
and spatial directions, respectively. The link variables,𝑈𝜇 (𝑥), are matrices valued in the symplectic
group 𝑆𝑝(4), with 𝜇 the space-time direction. We denote as𝑈 a generic configuration, i.e. a choice
of matrices 𝑈𝜇 (𝑥) for each 𝑥 and 𝜇. The standard Wilson action is

𝑆[𝑈] ≡ 6�̃�
𝑎4 (1 − 𝑢𝑝 [𝑈]), (1)

where 𝑢𝑝 [𝑈] is the average plaquette for a configuration, 𝑈. The partition function is given by

𝑍𝛽 ≡
∫

[𝐷𝑈𝜇]𝑒−𝛽𝑆 [𝑈 ] , (2)

where 𝛽 is the gauge (inverse) coupling of the lattice theory.
To study this system, we use the LLR method, in which we analyse the micro-canonical

information through the density of states, defined as

𝜌(𝐸) ≡
∫

[𝐷𝑈]𝛿(𝑆[𝑈] − 𝐸). (3)

The energy (action), 𝐸 , of the system is discretised into small energy intervals, of size Δ𝐸/2, and
the logarithm of the density of states, 𝜌(𝐸), is approximated as a piecewise linear function, in the
small energy intervals 𝐸𝑛 − Δ𝐸/4 ≤ 𝐸 ≤ 𝐸𝑛 + Δ𝐸/4, with 𝑛 = 1, · · · , 𝑁 , by writing

ln 𝜌(𝐸) ≈ 𝑎𝑛 (𝐸 − 𝐸𝑛) + 𝑐𝑛, 𝑐𝑛 = 𝑐1 +
Δ𝐸

4
𝑎1 +

Δ𝐸

2

𝑛−1∑︁
𝑘=2

𝑎𝑘 +
Δ𝐸

4
𝑎𝑛 . (4)

The goal of this method is to calculate the coefficients, 𝑎𝑛, in a set of intervals relevant for the
physical problem of interest. All other observables are then reconstructed from the knowledge
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Figure 1: Colour map display of the plaquette distribution, 𝑃𝛽 (𝑢𝑝), for a range of couplings between
𝛽 = 7.339 and 7.341, and plaquette values between 𝑢𝑝 = 0.568 and 0.576. Brighter colours correspond to
regions of phase space with higher probability. The LLR method has been applied to the 𝑆𝑝(4) gauge theory,
on lattices of size 4 × 243 with Δ𝑢𝑝

= 0.00048 (left panel) and 4 × 483 with Δ𝑢𝑝
= 0.00013 (right panel).

of 𝑎𝑛. A detailed discussion of the technical aspects of the implementation of this strategy in
our computations can be found in our earlier publications [57, 64]. For notational convenience,
when quoting the interval size we trade the energy interval size for the interval in plaquette value,
Δ𝑢𝑝

= 𝑎4Δ𝐸/6�̃� .
Using this approximation for the density of states, 𝜌(𝐸), the canonical ensemble can be recon-

structed. This allows for a determination of the plaquette distribution, 𝑃𝛽 (𝑢𝑝), the partition function,
𝑍𝛽 , and the vacuum expectation value (VEV) of observables, ⟨O⟩. The plaquette distribution and
partition function are estimated by exploiting the formal definitions

𝑃𝛽 (𝑢𝑝) =
1
𝑍𝛽

𝜌(𝐸)𝑒−𝛽𝐸 |𝐸=6�̃� (1−𝑢𝑝 )/𝑎4 , 𝑍𝛽 =

∫
𝑑𝐸𝜌(𝐸)𝑒−𝛽𝐸 . (5)

A first-order phase transition can be characterised by the emergence of co-existing phases.
Near the transition, the plaquette probability distribution displays a double-peak structure, which is
commonly approximated by a double Gaussian distribution, namely writing

𝑃𝛽 (𝑢𝑝) = 𝑃
(+)
𝛽

(𝑢𝑝) + 𝑃
(−)
𝛽

(𝑢𝑝) , (6)

where 𝑃
(±)
𝛽

(𝑢𝑝) are Gaussian distributions for states in the purely high (+) or low (-) temperature
phase. The width of the individual distributions is expected to scale inversely with the volume,
while the heights of the peaks should scale as the square root of the volume. At the critical point,
these two distributions are of equal height. Between the two Gaussians there is a region of phase
space with exponentially suppressed probability. The phase transition occurs when the system
tunnels from one meta-stable vacuum to another (the true vacuum). Figure 1 shows the plaquette
distribution for a selection of couplings chosen near the critical point, for the 𝑆𝑝(4) pure gauge
theory on lattices with size 4 × 243 and 4 × 483.
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Figure 2: Left panel: the specific heat, 𝐶𝑉 (𝛽), as a function of the coupling, 𝛽, around the critical point of
the 𝑆𝑝(4) lattice gauge theory on lattice with various sizes, calculated using the LLR method. Right panel:
the peak of the specific heat, 𝐶(max)

𝑉
, normalised by a factor of 4𝑎4/6�̃� (in green), and the square of the

plaquette jump, (Δ⟨𝑢𝑝⟩𝛽𝐶𝑉
)2 (in red), as a function of the cube of the inverse of the aspect ratio, 𝑁3

𝑡 /𝑁3
𝑠 , of

several choices of lattice, with fixed 𝑁𝑡 = 4. A line has been fitted to both of these results (dashed) and an
extrapolation towards the thermodynamic limit is taken.

The leading-order, finite-size scaling of observables at the critical point can be modelled
with the guidance offered by the double Gaussian approximation. In the work presented in this
contribution, we report only on the specific heat, defined as

𝐶𝑉 (𝛽) =
6�̃�
𝑎4

(
⟨𝑢𝑝⟩2

𝛽 − ⟨𝑢2
𝑝⟩𝛽

)
, (7)

This quantity measures the fluctuation of the plaquette. At the critical point of a first-order phase
transition, and in the thermodynamic limit, we expect the appearance of a discrete jump in the average
plaquette, as the system tunnels from one meta-stable vacuum to another. This leads to a divergent
specific heat, that is smoothened out by finite-volume effects away from the thermodynamic limit.
The peak of the specific heat, 𝐶(max)

𝑉
, is known to scale with the volume, 𝐶(max)

𝑉
∝ 𝑉 = 𝑎3𝑁3

𝑠 , with
the error on 𝐶

(max)
𝑉

/𝑉 being inversely proportional to the volume [65].
To verify the leading-order scaling of the peak of the specific heat, and its relation to the

plaquette jump in the thermodynamic limit, we calculate both quantities for a selection of lattice
sizes, with 𝑁𝑡 × 𝑁3

𝑠 = 4 × 203, 4 × 243, 4 × 283, 4 × 403, and 4 × 483. The left panel of Fig. 2
shows the specific heat calculated using the LLR method in the proximity of the transition. For
each choice of lattice volume,𝑉 , these results are calculated with one interval size, Δ𝑢𝑝. The figure
shows how, as the volume increases, the width of the peak decreases, and its height increases.

The discontinuity in the value of the plaquette at the critical point is related to an important
thermodynamic quantity, the latent heat. At finite volume, the smoothing of the VEV due to finite-
size effects makes it difficult to directly determine the size of the jump. In the thermodynamic
limit, though, it is equivalent to the difference between the peaks of the plaquette distribution at
the critical point, Δ⟨𝑢𝑝⟩𝛽𝐶𝑉

. In the infinite volume limit, in which the two meta-stable peaks are
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Ṽ = 4×24×24×24
∆up = 0.00048
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Figure 3: Left panel: the plaquette distribution at the critical point, reconstructed using the LLR method
for the 𝑆𝑝(4) lattice gauge theory on a selection of volumes, computed with finite interval size. The dashed
lines show the locations of the peaks of the distribution. Right panel: the plaquette distribution of the largest
available lattice, 𝑁𝑡 × 𝑁3

𝑠 = 4 × 483, evaluated at the critical point (blue continuous line), compared with
a double Gaussian distribution fit of the same measurements (black dashed line), obtained by including in
the fit region the measurements falling outside the region delimited by the two vertical black lines. The
difference between the two is shown by the magenta area.

expected to a become Dirac delta distributions, the peak of the specific heat can be related to the
plaquette discontinuity through the relation

lim
�̃�/𝑎4→∞

𝑎4

�̃�
𝐶

(max)
𝑉

→ 3
2
(Δ⟨𝑢𝑝⟩𝛽𝐶𝑉

)2 . (8)

In the right panel of Fig. 2, the peak of the specific heat, normalised by a factor 4𝑎4/6�̃� , is
plotted as a function of the cube of the inverse of the aspect ratio, 𝑁3

𝑡 /𝑁3
𝑠 . We also display, on the

same plot, the discontinuity of the plaquette. The limit of vanishing interval size has been taken,
as discussed in the appendices of Ref. [64]. For both sets of results, we provide a fit with a simple
quadratic polynomial in (𝑁3

𝑡 /𝑁3
𝑠 ), and superimpose the resulting best fit curve to the measurements.

The reduced 𝜒-square for the fit of the specific heat is 𝜒2/𝑁d.o.f. = 5.5. The extrapolation to the
thermodynamic limit gives by lim(𝑁3

𝑡 /𝑁3
𝑠 )→0(4𝑎4/6�̃�)𝐶(max)

𝑉
= 5.85(2) × 10−6. For the plaquette

jump 𝜒2/𝑁d.o.f. = 0.18 and lim(𝑁3
𝑡 /𝑁3

𝑠 )→0(Δ⟨𝑢𝑝⟩𝛽𝐶𝑉
)2 = 6.09(7) × 10−6.

The figure shows that at finite volume the measurements of 𝑎4

�̃�
𝐶

(max)
𝑉

and 3
2 (Δ⟨𝑢𝑝⟩𝛽𝐶𝑉

)2 are
inconsistent with one another, as expected. They approach one another in the thermodynamic limit,
but with two very different functional dependences on the volume 𝑉 ∝ 𝑁3

𝑠 . However, ultimately
the numerical results we have, for 𝑁𝑡 = 4, display a statistically significant discrepancy in the
thermodynamic limit. On the one hand, the values of the reduced 𝜒-square we reported for the fit to
the specific heat indicates that other effects may need to be taken into account. In this respect, one
should highlight that the measurements we report have remarkably small statistical errors, requiring
a new level of control over the systematics. For example, the large value of the 𝜒2 might be an
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indication that we are underestimating the statistical errors, and the degree of correlation in the
LLR measurements might need a further reassessment.

On the other hand, there is some evidence in our measurements that one of such systematic
effects might have a very important and interesting physical meaning. Although the double Gaus-
sian approximation is a good leading-order approximation, it neglects a contribution that becomes
particularly important when one tries to model the (infinite volume) thermodynamics at the tran-
sition. The presence of mixed phase configurations, for example a low temperature bubble within
a high temperature background, can provide a contribution to the plaquette distributions that is
approximately flat, in the region between the two peaks. This plateau becomes more clear at larger
volumes, as the contributions from the pure-phase configurations are more suppressed between
the two peaks. If this effect is substantial indicating the presence of a non-trivial contribution
of the thermodynamics of this additional mixed phase, then the method of extrapolation to the
thermodynamic limit may need to be revisited.

To test this interesting hypothesis, we show the plaquette distribution at the critical point, at
which the two pure phase contributions to the plaquette distribution have peaks of equal height, in
the left panel of Fig. 3, for a few choices of lattice volumes. The dashed vertical lines indicate the
location of the peaks of the distribution. The spacing between the two provides a measurement of
the plaquette discontinuity. It can be seen that as the volume grows the peaks become narrower, and
their height grows. We can also see that the region between the peaks never vanishes. In the right
panel of this plot we fit a double Gaussian to the plaquette distribution at the critical point for lattices
with 𝑁𝑡 × 𝑁3

𝑠 = 4 × 483. We see that the fitted double Gaussian vanishes in the unstable region,
while the observed plaquette distribution plateaus. This difference demonstrates the importance of
the mixed phase states, which requires a refinement of the infinite volume extrapolations.

3. Summary and Outlook

Using the LLR method, we have computed the plaquette distribution, the peak of the specific
heat, and the plaquette discontinuity, evaluated at the critical point for the deconfinement phase
transition, in the 𝑆𝑝(4) pure lattice gauge theory, for a range of volumes, 𝑁𝑡 × 𝑁3

𝑠 = 4 × 203, 4 ×
243, 4× 283, 4× 403, and 4× 483. We have showed that at the critical point, for the largest volumes
available, the plaquette distribution starts to show evidence of a systematic discrepancy with the
double Gaussian approximation. In the region between the two peaks, the discrepancy indicates the
presence of a contribution to the thermodynamics coming from the mixed-phase configurations.
This, combined with the evidence for a high value of the reduced 𝜒-square in the fit for the peak
of specific heat, accompanied by the disagreement with the expected relation to the square of the
plaquette discontinuity in the thermodynamic limit, provides intriguing evidence that the mixed
phase configurations are effecting the extrapolations and must be hence included in future analysis,
for accurate results.

Since the presentation at the LATTICE2024 conference, our collaboration has continued to
perform further numerical calculations within this lattice theory. We have been extending the
set of lattice sizes presented here, and in Ref. [64], by an additional one with larger volume
𝑁𝑡 × 𝑁3

𝑠 = 4× 803, with the intention of providing more numerical data to study the deviation from
the double Gaussian approximation. Unsurprisingly, our preliminary data suggests that the iterative
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procedure to solve for the values of 𝑎𝑛 requires more iteration steps than on smaller lattices. We are
further investigating the system at larger temporal extents, 𝑁𝑡 = 5, 6, to the purpose of performing
the first study of the continuum limit for this theory (at finite temperature).
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