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1. Introduction

The standard model (SM) has been very successful in explaining experimental results. However,
searches for physics beyond the SM (BSM) are important and should be pursued, with one of the
key motivations being the need of a strong first-order electroweak phase transition (EWPT) in the
theory of electroweak baryogenesis. It has been known that the SM does not facilitate such a phase
transition at the measured Higgs boson mass, 𝑚ℎ ≈ 125 GeV [1, 2].

The simplest BSM extension complying with the observations is the two-Higgs-doublet model
(2HDM), where a second 𝑆𝑈 (2)-doublet scalar field is added to the theory. This model yields
an enlarged spectrum and also rich phenomenology. Dark matter candidates within the 2HDM-
type, usually called inert double models, were proposed in [3–5]. Moreover, 2HDMs are also an
important part of many supersymmetric theories such as the Minimal Supersymmetric Standard
Model [6, 7].

The Lagrangian of the 2HDM considered in this work contains the kinetic terms of both scalar
and gauge fields, and the most general 𝑆𝑈 (2)-invariant scalar potential. Since we are interested
in the lattice application, from now on we consider the case of real couplings only. This is the
CP-conserving 2HDM [8, 9]. With this choice, the most general renormalizable 2HDM scalar
potential has 10 real parameters, and in the usual doublet formulation reads

𝑉2HDM = 𝜇2
11𝜙

†
1𝜙1 + 𝜇2

22𝜙
†
2𝜙2 + 𝜇2

12 Re(𝜙†1𝜙2) + 𝜆1(𝜙†1𝜙1)2 + 𝜆2(𝜙†2𝜙2) + 𝜆3(𝜙†1𝜙1)(𝜙†2𝜙2)

+ 𝜆4(𝜙†1𝜙2)(𝜙†2𝜙1) + 𝜆5 Re(𝜙†1𝜙2)2 + Re(𝜙†1𝜙2)
[
𝜆6(𝜙†1𝜙1) + 𝜆7(𝜙†2𝜙2)

]
.

(1)

The amount of literature on the 2HDM is vast and on-going (see ref. [10] and references
therein). Most of the works focus on a perturbative, tree-level analysis of the theory. On the other
hand, the lattice studies of the 2HDM are scarce [11, 12] and a thorough non-perturbative analysis is
needed. Furthermore, recent investigations suggest that large self interacting couplings in the BSM
sector may be realizable within the SM bounds [13, 14]. In fact, finite-temperature studies indicate
that baryogenesis in 2HDM may benefit from large couplings [15–18], such that the electroweak
phase transition is of strong first-order in this regime. Two aspects are of importance: the study of
the spectrum of the theory, and the non-perturbative analysis of the finite-temperature transition,
both of which have not been explored by lattice simulations, and are covered in this work.

In this work we take the Z2-breaking terms in eq. (1) to vanish, 𝜇12 = 𝜆6 = 𝜆7 = 0 , defining
the so-called inert models. Moreover, by imposing the condition 𝜆4 = 𝜆5 we obtain the custodial
limit of the 2HDM. In this case the symmetry structure is identical to the SM, with the action being
invariant under global 𝑆𝑈 (2) transformations where both fields transform simultaneously.

The lattice action for the custodial 2HDM used in this work can then be written as

𝑆2HDM =
∑
𝑥

2∑
𝑛=1

{∑
𝜇

−2𝜅𝑛 Tr
(
Φ†

𝑛𝑈𝜇Φ𝑛 (𝑥 + 𝜇)
)
+ Tr

(
Φ†

𝑛Φ𝑛

)
+ 𝜂𝑛

[
Tr

(
Φ†

𝑛Φ𝑛

)
− 1

]2
}

+ 𝜂3 Tr
(
Φ†

1Φ1

)
Tr

(
Φ†

2Φ2

)
+ 2𝜂4 Tr

(
Φ†

1Φ2

)2
+ 𝑆YM, (2)

where 𝑆YM = 𝛽
∑

𝑥

∑
𝜇>𝜈

[
1 − 1

2 Re Tr𝑈𝜇𝜈 (𝑥)
]

is the standard Wilson plaquette action with 𝑈𝜇𝜈

being the plaquette and 𝛽 = 4/𝑔2.
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In this formulation we consider the quaternion formalism, where scalar fields in the fundamental
representation of 𝑆𝑈 (2) are written as a matrix, Φ𝑛 (𝑥) = 1√

2

∑4
𝑎=1 𝜃𝛼𝜑

𝛼
𝑛 (𝑥) with 𝜑𝛼

𝑛 being real
components, 𝛼 = 1, 2, 3, 4, 𝜃4 = 12×2, and 𝜃𝑘 = 𝑖𝜎𝑘 for 𝑘 = 1, 2, 3 with 𝜎𝑘 being the Pauli
matrices. In this representation the fields Φ𝑛 transform under the 𝑆𝑈 (2) gauge group by a left
multiplication, and under the global 𝑆𝑈 (2) by right multiplication, Φ𝑛 → 𝐿 (𝑥)Φ𝑛𝑅.

2. Phase structure & spectrum

While the single Higgs doublet model, governed by three bare couplings, has a simple phase
structure1, the enlarged parameter space of the 2HDM complicates the phase structure.

𝜅c
2

𝜅2

(𝐻0)

(𝐻2)

𝜅c
1

𝜅1

(𝐻1)

(𝐻12)
𝑆𝑈 (2) × (Z2)2

𝑆𝑈 (2) × (Z2)2𝑆𝑈 (2) × (Z2)2

- QCD-like
- 𝑚1− > 𝑚0+

- Degenerate 𝑊-boson
- SM Higgs 𝑚ℎ

- BSM scalar 𝑚𝐻

- 3 degenerate BSM
scalars 𝑚𝐴 = 𝑚𝐻±

(similar to 𝐻2)

- 3 non-degenerate 1−

- 3 Goldstone Bosons
- 2 scalar states
𝑚ℎ , 𝑚𝐻

Figure 1: Summary of the cutodial 2HDM parameter space with the global symmetries and spectrum content
for each of the sectors 𝐻0, 𝐻1, 𝐻2, 𝐻12.

In the case of the inert models, it is possible to divide the parameter space in four different
regions where none, one, or both scalar fields are in the Higgs phase [10]. In the perturbative
formulation, using the vacuum expectation values, 𝑣𝑖 , for each scalar field this corresponds to:
(𝐻0) : 𝑣1 = 𝑣2 = 0, (𝐻2) : 𝑣1 = 0, 𝑣2 ≠ 0, (𝐻1) : 𝑣1 ≠ 0, 𝑣2 = 0, (𝐻12) : 𝑣1 ≠ 0, 𝑣2 ≠ 0. These
sectors divide the 𝜅1, 𝜅2 plane into four regions defined by the critical values, 𝜅𝑐𝑖 . Note, however,
that not all four can be seen as separate phases since some of these transitions are crossovers for
certain regimes of the couplings. The global symmetries and predicted particle content of each of
the phases are summarized in fig. 1.

Sectors (𝐻1), (𝐻2), and (𝐻12) have the Higgs mechanism active. However, the custodial
𝑆𝑈 (2) symmetry is spontaneously broken in (𝐻12). The absence of the custodial symmetry, and the
presence of massless Goldstone bosons in the spectrum exclude this phase from phenomenological
considerations, since a viable 2HDM has to reproduce SM physics at low energies.

1In fact, only a single phase exists in the Higgs-gauge interaction. The confinement and Higgs phases are analytically
connected.
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Sectors (𝐻1) and (𝐻2) are equivalent, and for definitiveness we will work with the latter.
This is defined by 𝜅2 > 𝜅𝑐2 , 𝜅1 < 𝜅𝑐1 , and consequently, it is the field Φ2 that reproduces the
SM-like Higgs. At tree-level this model predicts the existence of three degenerate scalar particles,
𝑚2

𝐴 = 𝑚2
𝐻± = 𝜇2

11 + 𝜆3𝑣
2/2, and two other scalar states, 𝑚2

𝐻 = 𝑚2
𝐻± + 𝜆4𝑣

2, and 𝑚2
ℎ = 𝜇2

22𝑣
2, the

latter being identified with the SM Higgs.
On the lattice the spectrum is obtained in sector (𝐻2) by studying the large time behavior

of two-point functions 〈O(𝑡)O(0)〉, where O is a zero momentum composite operator with the
quantum number of the particle of interest. In particular we investigate the following operators,

𝑆𝑎𝑖 𝑗 (𝑥4) =
∑
®𝑥

Tr
[
Φ†

𝑖 (𝑥)Φ 𝑗 (𝑥)𝜃𝛼
]
, 𝑊𝑎

𝑖 𝑗,𝜇 (𝑥4) =
∑
®𝑥

Tr
[
Φ†

𝑖 (𝑥)𝑈𝜇 (𝑥)Φ 𝑗 (𝑥 + 𝜇̂)𝜃𝛼
]
. (3)

In sector (𝐻2) the assignment between the interpolators and the spectrum is: 𝑆22 sources the SM
Higgs, and 𝑊

𝑗
22 the W bosons; 𝑆4

12 or 𝑊4
12 source the scalar state 𝐻, and 𝑆

𝑗
12 or 𝑊 𝑗

12 the scalar states
𝐴 and 𝐻±.

3. Standard model physics

In order to study the cutoff dependence of the enlarged spectrum of the theory we must define
a line of constant physics. Since we are interested in performing a non-perturbative study of the
BSM scalar states in the 2HDM, and given that only SM physics is available, we build a line of
partially constant physics (LPCP). The Higgs sector of the SM has two independent dimensionless
renormalized quantities that can be conveniently defined for the LPCP. Namely, the ratio of the
Higgs to the 𝑊 boson masses, 𝑅 ≡ 𝑚ℎ

𝑚𝑊
and the renormalized running gauge coupling 𝑔2

𝑅 (𝜇). In
the following, we fix the 𝑅-ratio to be close to the SM value, 𝑅 ≈ 1.5, while the renormalized gauge
coupling is set to its physical value at the scale of the 𝑊 boson mass, 𝑔2

𝑅 (𝜇 = 𝑚𝑊 ) ≡ 4𝜋𝑎𝑊 ∼ 0.5.
The definition of the renormalized running gauge constant is done through the gradient flow

action density [19],

〈𝐸 (𝑥, 𝑡)〉 = −1
4
〈
𝐺𝑎

𝜇𝜈 (𝑥, 𝑡)𝐺𝑎
𝜇𝜈 (𝑥, 𝑡)

〉
, (4)

where 𝐺𝜇𝜈 (𝑥, 𝑡) = 𝜕𝜇𝐵𝜈 (𝑥, 𝑡) − 𝜕𝜈𝐵𝜇 (𝑥, 𝑡) +
[
𝐵𝜈 (𝑥, 𝑡), 𝐵𝜇 (𝑥, 𝑡)

]
is the flowed gauge field strength.

On the lattice we use the Clover discretization of the field strength tensor and the Wilson action for
the discretized flow equation.

Using the relation between the renormalized gauge coupling at the scale 𝜇 = 1/
√

8𝑡 and the
flowed action density [20], we define the gradient flow renormalized gauge coupling by

𝑔2
𝐺𝐹 (𝜇) ≡

128𝜋2

9
𝑡2 〈𝐸 (𝑡)〉

����
𝑡=1/8𝜇2

, 𝑔2
𝐺𝐹 (𝜇 = 𝑚𝑊 ) = 0.5, (5)

where 〈𝐸 (𝑡)〉 is obtained from the Euclidean spacetime average of 〈𝐸 (𝑥, 𝑡)〉. On the lattice this
condition is equivalent to 𝑆 ≡

√
8𝑡0𝑚𝑊 = 1.0 where the flow scale 𝑡0/𝑎2 is defined by eq. (5).

4. Results

The adopted strategy to build the LPCP is to sequentially increase the bare coupling 𝛽 to-
wards the continuum while scanning the {𝜅2, 𝜂2}-space to find parameters such that the above SM
conditions are satisfied.
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𝛽 8.2 8.3 8.4 8.56 8.64
𝜅2 0.13175 0.13104 0.1306 0.1301 0.129985
𝜂2 0.00338 0.003 0.00285 0.00275 0.002737

𝑅 1.509(94) 1.527(80) 1.494(65) 1.504(39) 1.462(53)
𝑆 1.0055(98) 0.9956(65) 0.994(14) 0.994(20) 0.9958(94)

𝑎𝑚ℎ 0.402(28) 0.363(21) 0.305(16) 0.2192(84) 0.1863(75)
𝑎𝑚𝑊 0.2666(26) 0.2377(15) 0.2041(29) 0.1458(29) 0.1275(11)
𝑡0/𝑎2 1.7781(58) 2.1934(74) 2.966(13) 5.810(45) 7.626(43)

Λ (GeV) 301.5(29) 338.2(21) 393.8(57) 551(11) 630.4(56)
𝑚𝑊 𝐿 8.485(14) 7.639(13) 6.569(15) 4.694(18) 6.145(17)

Table 1: Bare couplings 𝛽, 𝜅2, 𝜂2 of the LPCP together with the corresponding physical conditions 𝑅, 𝑆, the
SM masses 𝑎𝑚ℎ , 𝑎𝑚𝑊 in lattice units, the gradient flow scale 𝑡0/𝑎2 and the estimated cutoff energy Λ𝑐 . The
remaining couplings were fixed to the values: 𝜅1 = 0.1245; 𝜂1 = 0.003; 𝜂3 = 0.002; 𝜂4 = 𝜂5 = 0.0001. The
simulations were performed on lattices with 𝐿 = 28, 28, 32, 32, 48.

In this strategy the remaining degrees of freedom of the theory are kept fixed, namely the
value of the BSM bare couplings (𝜅1, 𝜂1, 𝜂3, 𝜂4) are chosen such that the additional masses 𝑚𝐻 and
𝑚𝐴 = 𝑚𝐻± are larger than the SM masses but well below the lattice cutoff. Finally, the couplings
𝜂3, 𝜂4 were chosen to be small. In this way, the LPCP in the SM sector should be mostly insensitive
to the Φ1 scalar sector. Notice that while the initial strategy keeps the BSM bare couplings constant,
later we will explore the effect of the BSM couplings.

The results for the tuning of the LPCP defined by 𝛽, 𝜅2, 𝜂2 are shown in table 1. Five 𝛽 values
were considered, with the cutoff ranging from 300 GeV to 630 GeV. The scale setting is obtained
from the physical value 𝑚

phys
𝑊 = 80.377(12) GeV [21] with 𝑎 = 𝑚̂𝑊 /𝑚phys

𝑊 , where 𝑚̂ is the mass in
lattice units. Both the physical conditions 𝑅, 𝑆, and the lattice cutoff Λ = 1/𝑎 are shown in fig. 2 as
a function of 𝑎𝑚𝑤 and 𝛽, respectively.

Figure 2: Data from table 1: physical conditions 𝑅 and 𝑆 for the selected points in the line of constant SM
physics as a function of 𝑎𝑚𝑊 (left). For decreasing 𝑎𝑚𝑊 , each points has a corresponding increasing 𝛽

value. The lattice cutoff, Λ = 1/𝑎, estimated from 𝑎 = 𝑚̂𝑊 /𝑚phys
𝑊 is shown on the right as a function of 𝛽.

The gradient flow running of the gauge coupling was computed for each point in table 1. The
results for 𝑔2

𝐺𝐹 (𝜇 = 1/
√

8𝑡; 𝛽) are shown in fig. 3 as a function of the energy scale relative to 𝑚𝑊 .
All curves match for a large range, with lattice artifacts being only apparent for large values of 𝜇.2

2For each curve, only energies below a certain threshold are shown, corresponding to flow time radius
√

8𝑡/𝑎 > 2,
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Figure 3: Running gauge coupling 𝑔2
𝐺𝐹 (𝜇) as a function of 𝜇/𝑚𝑊 from lattice simulations along the

LPCP in table 1. Only scales with
√

8𝑡/𝑎 > 2 are shown. The perturbative result is matched to the curve
corresponding to Λ = 628 GeV. The gauge coupling from the Yukawa potential is fitted to the infrared
region, with the estimated screening mass 𝑚screen = 0.6243(28)𝑚𝑊 .

In fig. 3 the perturbative result, 𝑔2
PT is also shown for large energies. This was computed from

the one-loop 𝛽-function 𝛽𝑆𝑈 (𝑁 )+Scalars = 𝜇 d𝑔
d𝜇 = − 𝑏0𝑔

3

16𝜋2 + O
(
𝑔5) , with 𝑏0 = 11𝑁−𝑛𝑠

3 , and 𝑛𝑠 = 2 is
the number of scalar fields and 𝑁 = 2. The matching between the massive non-perturbative and the
massless perturbative schemes was done at a large enough energy scale, 𝜇 ≈ 3.5𝑚𝑊 .

From fig. 3 the structure of the running can be understood as follows: for energies 𝜇 � 𝑚𝑊

the gauge boson is effectively massless, and, the gauge coupling decreases as we increase the scale,
showing QCD-like asymptotic freedom. For energies 𝜇 ≳ 𝑚𝑊 , the mass of the W becomes relevant
and the coupling stops increasing. The screening of the gauge force due to the massive W boson is
clear from the difference between the perturbative and the non-perturbative result. For 𝜇 � 𝑚𝑊 ,
the gauge boson decouples and we effectively recover a scalar theory.

It is also interesting to explore the infrared structure of the running gauge coupling. For this
reason, a coupling 𝑔2

Y(𝜇 = 1/𝑟) = 𝑟2 d𝑉Y
d𝑟 from a Yukawa-like potential [22, 23], 𝑉Y(𝑟) ∝ 1

𝑟 𝑒
−𝑚𝑟

was fit to the lattice data in fig. 3. The results of the fit for the finest lattice is shown in fig. 3, with
the corresponding Debye screening-mass estimated3 as 𝑚screen = 0.6243(28)𝑚𝑊 ≈ 50 GeV.

While the points the LPCP have the SM observables fixed to their physical values, the BSM
couplings remain as free parameters. A particularly interesting objective would be to establish non-
perturbative bounds on the BSM spectrum, which would require a scan over the whole parameter
space. Instead, keeping the quartic couplings small, we explore the effect of changing the ‘unbroken’
hopping parameter 𝜅1 within the sector (𝐻2).

We performed simulations at different 𝜅1 values within sector (𝐻2) for each 𝛽 in table 1. The
SM conditions were monitored for each simulation, and the results are summarized in the left plot
of fig. 4. Within the available precision the physical conditions remain roughly unchanged by the
change in 𝜅1.

The mass ratios of the BSM states with the W boson are shown in fig. 4 for all 𝛽 values

that correspond to 𝑡/𝑎2 > 0.5. Smaller flow times lead to large lattice artifacts.
3Since we are using a fixed form 𝑒−𝑚/𝜇 for the Yukawa potential the arbitrariness in the definition of the renormalized

running coupling, and the scale at which it is defined would lead to different screening-masses.
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Figure 4: Left: Standard Model conditions for simulations at different 𝜅1 with the remaining couplings
defined in table 1. Right: mass ratio between the BSM states, 𝑚𝑆4

12
= 𝑚𝐻 , 𝑚

𝑆
𝑗
12
= 𝑚𝐴 = 𝑚𝐻± , and the W

boson mass, 𝑚𝑊 , for the same points at different 𝜅1 below (𝐻12).

in the LCPC. The improved precision allows us to observe the mass-gap between the 𝐻 and the
𝐴, 𝐻± states. While the mass ratio 𝑚𝐻/𝑚𝑊 develops a plateau when approaching 𝜅𝑐1 from below,
indicating a saturation to a finite value before the transition into (𝐻12), the ratio𝑚𝐴/𝑚𝑊 = 𝑚𝐻±/𝑚𝑊

seems to keep decreasing with increasing 𝜅1.
In the following we discuss our work on the finite temperature transitions in this model. The

points of the LPCP were simulated using asymmetric lattices, with the temporal extent defining
the physical temperature by 𝑇 = 1/(𝑎𝐿4). The ‘symmetry restoration’ that deactivates the Higgs
mechanism can be observed in the global observable 𝐿𝛼2

𝐿𝛼2 =
1

8𝑉

∑
𝑥,𝜇

Tr
{
𝛼†

2 (𝑥)𝑈𝜇 (𝑥)𝛼2(𝑥 + 𝜇̂)
}
, (6)

where 𝛼𝑛 is the ‘angular’ part of the quaternion Higgs field, Φ𝑛 = 𝜌𝑛𝛼𝑛, 𝜌𝑛 ∈ R, 𝛼𝑛 ∈ 𝑆𝑈 (2)
In the left plot of fig. 5 the renormalized ratio 𝐿𝛼2 (𝑇, 𝑔)/𝐿𝛼2 (0, 𝑔) (𝑔 denotes all couplings) is
shown as a function of the dimensionless ratio 𝑚𝑊 /𝑇 with 𝑎𝑚𝑊 taken from the zero temperature
simulations. Lattice artifacts can be seen at high energies due to the use of very small temporal
extents.

Figure 5: Finite temperature dependence of the ratio O(𝑇, 𝑔)/O(0, 𝑔) (left) and 𝜒O (𝑇, 𝑔)/𝜒O (0, 𝑔) (right)
for O = 𝐿𝛼2 . The susceptibility is shown only for the two larges 𝛽 values and for different spatial volumes
are shown.
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The departure of 𝐿𝛼2 (𝑇)/𝐿𝛼2 (0) from unity at high temperatures signals the passage to the
‘symmetric’ confinement region (𝐻0), around 𝑚𝑊 /𝑇𝑐 ∼ 0.5, with 𝑇𝑐 the critical temperature. In
order to better resolve the transition point, and to understand the character of this phase transition we
compute the susceptibility by 𝜒(𝐿) = 𝐿4

(〈
𝐿2
𝛼

〉
− 〈𝐿𝛼〉2

)
. This is shown for 𝐿𝛼2 in the right plot

of fig. 5 for the two finest lattices and different spatial volumes. The absence of volume dependence
in the peak of the susceptibility indicates that, similarly to the single Higgs case, the electroweak
transition in the weakly coupled 2HDM is a crossover.

5. Conclusion

We have studied the inert and custodial limit of the 2HDM along a line of constant SM physics
defined in the Higgs sector of the theory with the unbroken 𝑆𝑈 (2) custodial symmetry. Both the
Higgs-to-W mass ratio, and the renormalized weak gauge coupling at the mass scale of the W boson
were fixed to their physical values in order to define a LPCP.

The running of the gauge coupling, computed with the gradient flow scheme along the LPCP,
defines a single curve for a large range of energies. This was compared with the one-loop massless
scheme at high energies, and with a Yukawa potential at low energies. A scan in the BSM sector was
performed with constant SM physics, allowing to probe different regions of the parameter space.
We have found that very light (𝑚𝐻 ∼ 0.2𝑚𝑊 ) BSM scalar states are realizable within the LPCP
tuned at weak quartic couplings.

The finite temperature transition was also studied along the LPCP. The results show a transition
occurring around 𝑚𝑊 /𝑇𝑐 ∼ 0.5 for the finest 𝛽 values. However, only the finest two lattices allow
the observation of a well defined peak in the susceptibility. The lack of volume dependence in the
latter indicates a smooth crossover behavior at small quartic couplings for the electroweak phase
transition, which is in agreement with most of the perturbative tree-level predictions.

The use of small BSM quartic couplings have been particularly helpful in this work. As
indicated before, they make the BSM sector roughly independent of the SM physics, and prevent
the need of retuning the LPCP when scaning the BSM sector. While this is an advantage from
the computational perspective, there is no fundamental reason for the choice of small couplings,
and a complete study is necessary in the future. In fact, O(1) quartic couplings are thought to be
required for a strong first-order electroweak phase transition. Tree-level results [17, 18] indicate the
need of large mass splitting within the BSM scalar sector for the occurrence of a strong first-order
transition. This condition directly relates to an enhanced value of the inter-flavour Higgs quartic
couplings, namely 𝜂3.
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