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1. Introduction

Composite Higgs Models (CHMs), in which the fields in the Higgs doublet of the Standard
Model (SM) emerge as a set of Pseudo-Nambu-Goldstone-Bosons (PNGBs) [1–3], in a more
fundamental, strongly coupled, confining field theory, offer a promising framework within which
to address some of the big open questions of modern particle physics [4–6] (see also Refs. [7–9]),
such as the electroweak (big or small) hierarchy problem. The new physics sector is endowed with
an approximate global symmetry, described by a Lie group, 𝐺, broken to a subgroup, 𝐻, both by
explicit symmetry breaking terms, as well as the emergence of composite condensates. At low
energies the theory can be replaced by an Effective Field Theory (EFT), in which the PNGBs are
described by fields taking values in the coset, 𝐺/𝐻, along the same lines as the chiral Lagrangian.
The distinctive feature of CHMs is that while the electroweak gauge group is embedded as a
subgroup of 𝐺, the presence of a perturbative instability, itself originating from the coupling to SM
fields, induces misalignment with the vacuum [10], and electroweak symmetry breaking.

As the phenomenology, in particular the mass spectrum of the composite states, is determined
by the underlying strongly coupled dynamics, it is natural to study it on the lattice.1 Unfortunately,
for the minimal CHM, based upon the 𝑆𝑂 (5)/𝑆𝑂 (4) coset, the low-energy spectrum of which
consists only of the known SM fields, a simple formulation, amenable to numerical lattice studies
is not known (see Ref. [64]). Moreover, the aforementioned vacuum misalignment phenomenon
is perturbative in nature, and its lattice treatment unwieldy. Gauge-gravity dualities [65–68] offer
a promising alternative way to address calculability. Well known realisations of CHMs based on
the 𝑆𝑂 (5)/𝑆𝑂 (4) coset [69–76] are formulated as simple bottom-up holographic models, in which
confinement is modelled by a hard cut-off in the theory.

In this proceedings contribution, we summarize highlights from an ambitious research pro-
gramme [77–80] (see also Refs. [81–83]), which ultimately aims at building a complete holographic
CHM model, in which confinement is captured dynamically in the gravity theory. We show how to
combine the spontaneous breaking of an approximate 𝑆𝑂 (5) symmetry, arising in the background
geometry, with weak interactions, localised at the boundary, to induce vacuum misalignment. We
present a simplified, bottom-up holographic model, describing a four-dimensional gauge theory
in which a gauged 𝑆𝑂 (4) subgroup of the 𝑆𝑂 (5) approximate global symmetry is Higgsed to its
𝑆𝑂 (3) subgroup, due to misalignment with the vacuum structure of the underlying strongly coupled
dynamics. We provide examples of the resulting spectrum, computed using the gauge-invariant
formalism developed in Refs. [84–88]—see also Refs. [82, 89–96]. Our results demonstrate the
opening up of a (small) hierarchy in the spectrum. We dispense with the many, non-trivial, technical
details necessary in the construction, which can be found in the extensive, accompanying publica-
tion in Ref. [77]. We comment on the next programmatic model-building steps that would lead to
a fully realistic model of holographic CHM with minimal 𝑆𝑂 (5)/𝑆𝑂 (4) coset.

1Pertinent numerical lattice calculations exist in theories with gauge group 𝑆𝑈 (2) [11–20], 𝑆𝑝(4) [21–42] and
𝑆𝑈 (4) [43–50]. Results for the 𝑆𝑈 (3) theory with 𝑁 𝑓 = 8 Dirac fermions [51–58] have been reinterpreted in terms of
new CHMs, embedded in the dilaton EFT framework [59, 60]—see also Refs. [61–63]
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Table 1: Table I of Ref. [77]. Field content, organised in terms of irreducible representations of the
symmetries in 𝐷 = 6 dimensions (𝑆𝑂 (5) multiplets), 𝐷 = 5 dimensions (𝑆𝑂 (4) multiplets, with ⟨X⟩ ≠ 0),
and 𝐷 = 4 dimensions (𝑆𝑂 (3) multiplets, with ⟨ ®𝜋⟩ ≠ 0). In 𝐷 = 4 dimensions, we refer to gauge-invariant
combinations, massive representations of the Poincaré group.

𝐷 = 6, 𝑆𝑂 (5), 𝐷 = 5, 𝑆𝑂 (4), 𝐷 = 4, 𝑆𝑂 (3),
massless irreps. massless irreps. massive irreps.

Field 𝑆𝑂 (5) 𝑁dof Field 𝑆𝑂 (4) 𝑁dof Field 𝑆𝑂 (3) 𝑁dof

𝑔̂
𝑀̂ 𝑁̂

1 9 𝑔𝑀𝑁 1 5 𝑔𝜇𝜈 1 5

𝑔𝜇5 1 −
𝑔55 1 −

𝜒𝑀 1 3 𝜒𝜇 1 3

𝜒5 1 −
𝜒 1 1 𝜒 1 1

X𝛼 5 5 𝜙 1 1 𝜙 1 1

𝜋 𝐴̂ 4 4 𝜋Â 3 3

𝜋4 1 1

A
𝑀̂ 𝛼

𝛽 10 40 A 𝐴̂
𝑀

4 12 A Â
𝜇 3 9

A 4
𝜇 1 3

A Â
5 3 −

A 4
5 1 −

A 𝐴̂
6 4 4 A Â

6 3 3

A 4
6 1 1

A 𝐴̄
𝑀

6 18 A Ã
𝜇 3 9

A Ā
𝜇 3 9

A Ã
5 3 −

A Ā
5 3 −

A 𝐴̄
6 6 6 A Ã

6 3 3

A Ā
6 3 3

𝑃5𝛼 5 5 𝑃5 𝐴̂ 4 4 𝑃5 Â 3 3

𝑃54 1 1

𝑃55 1 1 𝑃55 1 1

2. Gravity model and background

The bottom-up holographic model described in Ref. [77] consists of gravity in six dimensions
coupled to a bulk scalar field, X, transforming in the (real) vector representation, 5, of a gauged
𝑆𝑂 (5) symmetry, with gauge field A𝑀̂ , summarised in Table 1. One of the non-compact spacetime
dimensions, 𝜌, serves as the holographic direction. We focus attention on background solutions
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Table 2: Table II from Ref. [77]. Summary table associating the fields in five-dimensional language to their
fluctuations in the four-dimensional, ADM formalism.

Field Fluctuation Field Fluctuation

𝑔𝑀𝑁 e𝜇𝜈

(
B𝑀

Â ,B𝑀
Ã
) (

v𝜇
Â , v𝜇 Ã

)
𝜒𝑀 v𝜇 A𝑀

4 v𝜇
4

(𝜙, 𝜒) (a𝜙 , a𝜒) A𝑀
Ā v𝜇

Ā

B Â
6

A4
6

 a𝐴̂ =


aÂ

a4

𝜋Â

Π4

 p𝐴̂ =


pÂ

p4

B Ã
6

A Ā
6

 a𝐴̄ =


aÃ

aĀ

with asymptotically AdS6 geometry for large values of 𝜌, corresponding to the ultraviolet (UV)
regime of the putative dual field theory. Another spatial dimension is compactified on a circle that
smoothly shrinks to zero size at a finite value of the radial direction, 𝜌 = 𝜌𝑜, marking the infrared
(IR) regime. The termination of the space at this point introduces a mass gap in the dual field
theory, mimicking the effects of confinement in the four-dimensional field theory [97].

In the background solutions, X develops a non-trivial profile, spontaneously breaking the
𝑆𝑂 (5) gauge symmetry to its 𝑆𝑂 (4) subgroup. Furthermore, a boundary-localised (spurion) field,
𝑃5, itself transforming as a 5, acquires a non-trivial vacuum expectation value (VEV), misaligned
with ⟨X⟩, so that the symmetry breaks to 𝑆𝑂 (3). We report here only the information needed to
keep the presentation self-contained and clarify the notation, referring for details to Refs. [79, 80].
The bulk action is

S (𝑏𝑢𝑙𝑘 )
6 =

∫
d6𝑥

2𝜋
√︁
−𝑔̂6

{
R6

4
− 1

2
𝑔̂𝑀̂ 𝑁̂

(
𝐷 𝑀̂X

)𝑇
𝐷 𝑁̂X −V6 −

1
2

Tr
[
𝑔̂𝑀̂ 𝑃̂ 𝑔̂𝑁̂ 𝑄̂F𝑀̂ 𝑁̂F𝑃̂𝑄̂

] }
. (1)

Here, 𝑀̂ = 0, 1, 2, 3, 5, 6 denote the six-dimensional spacetime indices. The metric in six dimen-
sions, 𝑔̂𝑀̂ 𝑁̂ , has a determinant 𝑔̂6 and signature mostly ‘+’. The Ricci scalar for the six-dimensional
spacetime is denoted by R6. The covariant derivatives are denoted as 𝐷 𝑁̂ , and 𝐹𝑀̂ 𝑁̂ is the 𝑆𝑂 (5)
field strength. The scalar potential reads:

V6 = −5 − Δ(5 − Δ)
2

𝜙2 − 5Δ2

16
𝜙4 , (2)

in terms of 𝜙, which appears in the parametrisation of the scalar field, X, as

X ≡ exp
2𝑖

∑̂︁
𝐴

𝜋 𝐴̂𝑡 𝐴̂
 X0 𝜙, where X0 ≡ (0, 0, 0, 0, 1)𝑇 ,

with 𝐴̂ = 1, . . . , 4, indexing the generators of the 𝑆𝑂 (5)/𝑆𝑂 (4) coset. The four PNGBs, ®𝜋 =

(𝜋1, 𝜋2, 𝜋3, 𝜋4), span the 𝑆𝑂 (5)/𝑆𝑂 (4) coset [77].
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We dimensionally reduce the action to five dimensions, S (𝑏𝑢𝑙𝑘 )
5 , and introduce boundaries at

finite values of the radial direction, 𝜌 = 𝜌𝑖 for 𝑖 = 1, 2, which act as regulators. Our calculations
are carried out within the constrained range 𝜌1 ≤ 𝜌 ≤ 𝜌2, while physical results are recovered in
the limits 𝜌1 → 𝜌𝑜 and 𝜌2 → ∞. Boundary spacetime indices are denoted as 𝜇 = 0, 1, 2, 3—see
Table 1. The complete five-dimensional action, S5, contains also boundary terms [77]:

S5 = S (𝑏𝑢𝑙𝑘 )
5 +

∑︁
𝑖=1,2

(
SGHY,𝑖 + S𝜆,𝑖

)
+ S𝑃5,2 + SV4,2 + SA,2 + S𝜒,2 + SX,2 . (3)

where the terms in bracket make the variational problem well defined, while

S𝑃5,2 =

∫
d4𝑥

√︁
−𝑔̃

{
− 1

2
𝐾5 𝑔̃

𝜇𝜈
(
𝐷𝜇𝑃5

)
𝐷𝜈𝑃5 − 𝜆5

(
𝑃𝑇

5 𝑃5 − 𝑣2
5

)2
}����

𝜌=𝜌2

,

SV4,2 = −
∫

d4𝑥
√︁
−𝑔̃V4(X, 𝜒, 𝑃5)

����
𝜌=𝜌2

,

SA,2
��
𝑃5=𝑃5

=

∫
d4𝑥

√︁
−𝑔̃

{
− 1

4
𝐷̂2 𝑔̃

𝜇𝜌𝑔̃𝜈𝜎F 𝐴̂
𝜇𝜈F 𝐴̂

𝜌𝜎 − 1
4
𝐷̄2 𝑔̃

𝜇𝜌𝑔̃𝜈𝜎F 𝐴̄
𝜇𝜈F 𝐴̄

𝜌𝜎

}����
𝜌=𝜌2

.

SX,2 =

∫
d4𝑥

√︁
−𝑔̃

{
− 1

2
𝐾X,2 𝑔̃

𝜇𝜈 (𝐷𝜇X)𝑇𝐷𝜈X
}����

𝜌=𝜌2

.

We set 𝑃5 = 𝑃5 for simplicity [77]. The parameters 𝐾5, 𝜆5, 𝐷̂2, 𝐷̃2, 𝐾𝑋,2 are discussed later.

2.1 Model parameters and 𝑆𝑂 (4) gauging

The boundary terms in the action, Eq. (3), are used in the regularisation process, implemented
along the lines of holographic renormalisation [98–100]. Their finite parts are physical parameters
in our analysis. The spurion field, 𝑃5, is introduced so that all symmetry-breaking effects have
spontaneous origin in the gravity formulation [77]. The boundary term 𝐷̄2 contains the free
parameter, 𝜀2, that controls the strength of the gauging of the 𝑆𝑂 (4) in the field theory. In the next
section we comment on parameters, 𝑚2

4 and 𝑣, appearing in the boundary potential, V4(X, 𝜒, 𝑃5).
The symmetry breaking pattern 𝑆𝑂 (5) → 𝑆𝑂 (4) is controlled by 𝑘X ≡ 𝐾𝑋,2𝑒

𝜌2 (8/3−Δ) [77].
The presence of boundary localised terms breaks the 𝑆𝑂 (5) symmetry to a gauged 𝑆𝑂 (4)

subgroup, which may or may not be aligned to the unbroken 𝑆𝑂 (4) subgroup, depending on the
value of the vacuum misalignment angle, 𝑣. In the background, this parameterises the non-zero
value of 𝜋4 = 𝑣, and leads to the spontaneous breaking of the gauged 𝑆𝑂 (4) to 𝑆𝑂 (3). We introduce
indices adapted to 𝑆𝑂 (3), specifically Â = 1, 2, 3, Ã = 5, 6, 7, and Ā = 8, 9, 10. These are
chosen so that 𝑡 Ā represents the unbroken generators of 𝑆𝑂 (3). The fluctuations of the fourth
component of 𝜋 𝐴̂ is written as 𝜋4 = 𝑣 + Π4. In the spin-1 sector, there is mixing between the two
triplets, denoted by the indices Â and Ã. We define the following linear combinations:

B Â
6 ≡ cos(𝑣)A Â

6 + sin(𝑣)A Â+4
6 , (4)

B Ã
6 ≡ − sin(𝑣)A Ã−4

6 + cos(𝑣)A Ã
6 , (5)

B𝑀
Â ≡ cos(𝑣)A𝑀

Â + sin(𝑣)A𝑀
Â+4 , (6)

B𝑀
Ã ≡ − sin(𝑣)A𝑀

Ã−4 + cos(𝑣)A𝑀
Ã . (7)

5
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We adopt this basis for the fields (excluding the metric) that fluctuate around the backgrounds:

Φ𝑎 = {𝜙, 𝜒} , (8)

Φ(0)𝑎 = {B Â
6 ,A

4
6 ,B

Ã
6 ,A

Ā
6 } , (9)

𝑉𝑀
𝐴 = {𝜒𝑀 ,B𝑀

Â ,A𝑀
4,B𝑀

Ã ,A𝑀
Ā} , (10)

H (1)
𝑀

𝐴 =

{
0,

sin(𝑣)
𝑣

𝜕𝑀𝜋
Â + 𝑔

2
B𝑀

Â , 𝜕𝑀Π4 + 𝑔
2
A𝑀

4, 0, 0
}
. (11)

We use different symbols to distinguish the original fields in the action from the gauge-invariant
combinations of fluctuations associated with them—see Table 2.

The family of backgrounds of interest is characterised by two parameters: Δ, which is linked
to the dimension of the dual field-theory operator responsible for breaking 𝑆𝑂 (5) to 𝑆𝑂 (4), and
𝜙𝐼 = 𝜙(𝜌 = 𝜌𝑜), that controls the size of symmetry breaking effects. We impose the upper
bound 𝜙𝐼 ≤ 𝜙𝐼 (𝑐), with 𝜙𝐼 (𝑐) the critical value at which a first-order phase transition occurs—see
Ref. [77]—and beyond which these solutions would be metastable, and eventually unstable.

The strength of the 𝑆𝑂 (4) gauge coupling in the dual field theory is approximately 𝑔4 ≡
𝜀𝑔, where 𝑔 represents the bulk 𝑆𝑂 (5) coupling. We restrict attention to small values of the
renormalization constant, 𝜀, to justify the use of perturbation theory.

We can dial the symmetry breaking parameters, 𝑣 and𝑚2
4, to values that induce the spontaneous

breaking of the gauged 𝑆𝑂 (4) to 𝑆𝑂 (3), while also producing a separation between the mass scales
of parametrically light states and other heavier resonances. The light states, in the four dimensional
language, are three massless gauge fields and three massive (but light) vectors, associated with the
Higgsing 𝑆𝑂 (4) → 𝑆𝑂 (3), and one additional scalar singlet.

3. Numerical results: the mass spectrum

We provide examples of the mass spectrum of fluctuations and how they depend on the model
parameters. For concreteness, we hold fixed Δ = 2, 𝜙𝐼 = 𝜙𝐼 (𝑐) ≈ 0.3882, 𝜌2 − 𝜌0 = 5, and
𝜌1 − 𝜌0 = 10−9 in this part. Figures 1 and 2 demonstrate how the mass spectrum varies with 𝜀, 𝑔, 𝑣,
𝑚2

4, and 𝑘X . The spectra in Fig. 1 are normalized to the lightest 𝑆𝑂 (3)-singlet spin-2 fluctuation,
e𝜇𝜈 , while those in Fig. 2, to the lightest scalar singlet.

Figure 1 displays the spectra for a representative choice of 𝑔, 𝑘X , Δ, 𝜙𝐼 , and 𝑚2
4, while varying

𝑣 and 𝜀2, respectively. The figures reveal several important general characteristics. Only a few
states are light: these include the massless vectors that correspond to zero modes in the unbroken,
gauged 𝑆𝑂 (3) sector, the lightest p4 pseudoscalar, and the lightest vectors within the 𝑆𝑂 (4)/𝑆𝑂 (3)
coset. All other states have larger masses, demonstrating the opening of a small hierarchy between
these two sets of states. Additionally, the lightest vector states mass increases when either 𝑣 or 𝜀2

increases, and it approaches zero when either of these parameters is zero. These behaviours are
expected on the basis of the fact that these light vectors acquire a mass via the Higgs mechanism.

In Figure 2, we present three examples, to illustrate what the spectrum of this semi-realistic
implementation of CHM looks like. To this purpose, we denoted by 𝐻 the lightest mode of the

6
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aÂ

aĀ
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Figure 1: Figures 3 and 4 of Ref. [77]. Mass spectra, 𝑀 , of (gauge-invariant) bosonic fluctuations, as
functions of the parameter 𝑣 (top) and 𝜀2 (bottom). The right panels are details of the left ones.

p4 fluctuations, and its mass as 𝑚𝐻 , and normalised the other masses against it. We impose the
condition 𝑔4 = 𝜀𝑔 = 0.7, to obtain a coupling strength for the 𝑆𝑂 (4) gauge fields comparable to the
𝑆𝑈 (2)𝐿 coupling in the standard model. We then adjust the remaining parameters so that the mass
ratio between the lightest fluctuations in the spin-1 sector and the spin-0 sector is approximately
𝑀𝑍/𝑚𝐻 ≃ 0.73, reflecting the experimental mass ratio between the 𝑍 and Higgs bosons. We show
three examples of bosonic spectra that meet qualitative model-building requirements: if we identify
the lighter states with experimentally established particles, with the obvious caveats, we find a rich
spectroscopy of new particles appearing with large masses, after a gap in the energy range in which
direct and indirect searches for new physics, so far, yield negative results.

4. Outlook

We displayed a semi-realistic implementation of vacuum misalignment that meets all the
requirements of a CHM, in a context in which calculability extends to include the main properties
of heavy, composite states. The framework we developed, within gauge-gravity dualities, combines
the strongly coupled dynamics, captured by the bulk physics of the gravity description, with
weak coupling effects, captured by the boundary terms in gravity. The two next steps of our
research programme will take us in opposite, but equally important, directions. First, to make
the phenomenology fully realistic, we would replace the weak gauging of 𝑆𝑂 (4) with the SM
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e aϕ,χ aĀ v4 pÂ
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Figure 2: Figure 5 of Ref. [77]. Illustrative examples of mass spectra, showing the suppression of the scale
of the three lightest states. The masses as normalised to the mass, 𝑚𝐻 , of the lightest pseudoscalar.

group, 𝑆𝑈 (2) × 𝑈 (1). It would be desirable to also include a treatment of top-quark partial
compositeness [101], by extending the bulk theory to include fermions in its field content. Second,
as suggested in Ref. [78], we envision replacing the current, simplified bottom-up gravity action
with that of a known supergravity theory, that can be argued to derive from a theory of quantum
gravity. These challenging, but realistic tasks, are left for the future.
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