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Spectral densities encode non-perturbative information crucial in computing physical observables
in strongly coupled field theories. Using lattice gauge theory data, we perform a systematic study
to demonstrate the potential of recent technological advances in the reconstruction of spectral
densities. We develop, maintain and make publicly available dedicated analysis code that can
be used for broad classes of lattice theories. As a test case, we analyse the 𝑆𝑝(4) gauge theory
coupled to an admixture of fermions transforming in the fundamental and two-index antisymmetric
representations. We measure the masses of mesons in energy-smeared spectral densities, after
optimising the smearing parameters for available lattice ensembles. We present a summary of
the mesons mass spectrum in all the twelve (flavored) channels available, including also several
excited states.
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1. Lattice theory, ensembles, and observables

The analysis of spectral densities provides a novel tool to understand non-perturbative aspects
of lattice gauge theories—see, e.g., Refs. [1–16]. This proceedings contribution discusses our
approach to reconstructing spectral densities using smeared correlation functions, focusing on
the implementation of numerical techniques and their application to meson spectroscopy. We
exemplify the potential of such approach on the 𝑆𝑝(4) gauge theory coupled to an admixture of
fermions transforming in the fundamental and 2-index antisymmetric representations, which serves
as a testbed for

exploring new physics scenarios, including composite Higgs models. We analyse new ensem-
bles made available by the development of the research programme of Theoretical Explorations on
the Lattice with Orthogonal and Symplectic groups (TELOS) [17–30]—see also Refs. [31–34].

The target theory of this study is the 𝑆𝑝(4) gauge theory coupled to 𝑁 (f ) = 2 fundamental and
𝑁 (as) = 3 antisymmetric fermions. We employ Wilson-Dirac fermions, with gauge configurations
generated using an admixture of the Hybrid Monte Carlo (HMC) and Rational HMC (RHMC)
algorithms. The action on the lattice is written as 𝑆 = 𝑆𝑔 + 𝑆 𝑓 , where 𝑆𝑔 is the Wilson plaquette
gauge action, with coupling 𝛽 = 8/𝑔2

0, while 𝑆 𝑓 is the Wilson fermion action—for details, see
Ref. [29]. We assume the presence of two diagonal mass matrices for the two species of fermions,
denoted as 𝑎𝑚0

𝑓
and 𝑎𝑚0

𝑎𝑠. A summary of the parameters characterising the ensembles is provided
in Table 1.

We focus our attention on the twelve gauge invariant operators built as fermion bilinears,
O(®𝑥, 𝑡), with all the admissible spin structures, and off-diagonal flavor structure—for the singlets,
see Ref. [30]. One can extract the effective masses from correlation functions 𝐶 (𝑡), defined as

𝐶 (𝑡) =
∑︁
®𝑥
⟨0|O(®𝑥, 𝑡)O†(®0, 0) |0⟩ . (1)

In order to improve the signal, we introduce APE [35] and Wuppertal [36] smearings, and solve a
Generalized Eigenvalue Problem (GEVP), to further optimise the numerical quality of the ground
state signal, as well as to detect excited states. We construct the operator basis by varying the
smearing parameters. Numerical results are listed in Tables V to XVII of Ref [29].

2. Spectral Density Reconstruction Method

The spectral density, 𝜌(𝐸), is the inverse Laplace transform of the correlation function, 𝐶 (𝜏):

𝐶 (𝜏) =
∫ ∞

0
𝑑𝐸 𝜌(𝐸)𝑒−𝐸𝜏 . (2)

We reconstruct it using the Hansen-Lupo-Tantalo (HLT) method [2], a variation of the Backus-
Gilbert method [37]. To regularise this inversion, we introduce a smearing kernel Δ𝜎 (𝐸, 𝜔), which
defines the smeared spectral density, 𝜌𝜎 (𝐸):

𝜌𝜎 (𝜔) =
∫ ∞

0
𝑑𝐸 Δ𝜎 (𝐸, 𝜔)𝜌(𝐸). (3)
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Table 1: Summary table of the properties of the ensembles used in this study. The inverse coupling is
denoted by 𝛽, and the bare masses of the two species of fermions as 𝑎𝑚0

𝑓
and 𝑎𝑚0

𝑎𝑠 , respectively [29].

Label 𝛽 𝑎𝑚0
𝑓

𝑎𝑚0
𝑎𝑠 Lattice Volume

(
𝑁𝑡 × 𝑁3

𝑠

)
M1 6.5 -1.01 -0.71 48 × 203

M2 6.5 -1.01 -0.71 64 × 203

M3 6.5 -1.01 -0.71 96 × 203

M4 6.5 -1.01 -0.70 64 × 203

M5 6.5 -1.01 -0.72 64 × 323

The parameter 𝜎 controls the smearing width, and therefore it controls the tradeoff between resolu-
tion and quality of the reconstruction. A larger 𝜎 broadens the kernel, reducing noise but blurring
spectral features, while a smaller 𝜎 preserves fine details but increases statistical fluctuations. In
order to balance the effects of statistical and systematic effects, we minimise, at fixed 𝜎, a combined
cost functional,𝑊 [ ®𝑔], defined as follows. We write the spectral density as 𝜌𝜎 (𝐸) =

∑
𝜏 𝑔𝜏 (𝐸) 𝐶 (𝜏),

the coefficients ®𝑔 = {𝑔1, · · · , 𝑔𝜏max} corresponding to fixed-time lattice slices. We then define

𝑊 [ ®𝑔] ≡ 𝐴[ ®𝑔]/𝐴[0] + 𝜆 𝐵[ ®𝑔]/𝐵norm, (4)

where 𝐴[ ®𝑔] =
∫ ∞

0 𝑑𝜔 𝑒𝛼𝜔
(
𝜌𝜎 (𝜔) − 𝜌target(𝜔)

)2, 𝐵[ ®𝑔] =
∑

𝜏𝜏
′ 𝑔𝜏 Cov𝜏𝜏

′ [𝐶] 𝑔𝜏′ , 𝐵norm(𝐸) =

𝐶2(1)/𝐸2, 𝜌target is the target spectral density extracted from the data, 𝜆 is a trade-off parameter
between systematic and statistical error and Cov[𝐶] is the covariance matrix of the correlators
𝐶 (𝜏). In principle, a particular choice of 𝜆 introduces a source of bias that needs to be removed.
Therefore, we perform a scan over 𝜆 values, and we search for plateaus in the reconstructed spectral
density. Figure 1 illustrates how the spectral reconstruction depends on 𝛼 and 𝜆. Having identified
optimal values of these parameters, details of which can be found in Ref. [29], the minimisation of
𝑊 [ ®𝑔] yields the coefficients, ®𝑔, and hence the reconstructed spectral density, 𝜌𝜎 (𝐸). The process
is repeated for each value of 𝐸 in the range of interest.

The systematic errors associated with the spectral density reconstruction are evaluated by
varying the parameters 𝛼 and 𝜆. The first component of the systematic error is estimated as
𝜎1,sys(𝜌(𝐸)) =

��𝜌𝜆∗ (𝐸) − 𝜌𝜆∗/10(𝐸)
��, and the second as 𝜎2,sys(𝜌(𝐸)) =

��𝜌𝜆∗,𝛼2 (𝐸) − 𝜌𝜆∗,𝛼1 (𝐸)
��,

where 𝜆∗ is defined by the optimisation procedure, and 𝛼𝑖 are limiting values of 𝛼. While most of

Figure 1: Examples of the optimisation of the spectral density reconstruction, for vector mesons (V) [29].
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Figure 2: Spectral density kernels reconstructed with the HLT method, compared to target [29].

the bias-removal comes from the scan over 𝜆, by absorbing the bias into the statistical noise, 𝜎1,sys

takes care of possible residual effect.
Figure 2 shows a comparison of the reconstructed smearing kernel, Δ̄𝜎 (𝐸, 𝜔) =

∑
𝜏 𝑔𝜏 (𝐸)𝑒−(𝑡+1)𝐸 ,

with the target one, for two choices of kernel. The Gaussian kernel is

Δ
(Gaussian)
𝜎 (𝐸, 𝜔) = 𝑒

− (𝐸−𝜔)2
2𝜎2 /𝑍 (𝜔), 𝑍 (𝜔) =

∫ ∞

0
𝑑𝐸 𝑒

− (𝐸−𝜔)2
2𝜎2 , (5)

while the Cauchy kernel reads

Δ
(Cauchy)
𝜎 (𝐸, 𝜔) = 𝜎

(𝐸 − 𝜔)2 + 𝜎2 . (6)

3. Meson Spectroscopy

The spectral densities, 𝜌𝜎 (𝐸), associated with the meson correlation function, are fitted with
both the Gaussian and Cauchy kernels, by minimising the functional:

𝜒2 ≡
∑︁
𝐸,𝐸′

(
𝑓
(𝑘 )
𝜎 (𝐸) − 𝜌𝜎 (𝐸)

)
Cov−1

𝐸,𝐸′ [𝜌𝜎]
(
𝑓
(𝑘 )
𝜎 (𝐸 ′) − 𝜌𝜎 (𝐸 ′)

)
, (7)

where the fitting functions are, respectively, 𝑓
(𝑘 )
𝜎 (𝐸) = ∑𝑘

𝑛=1 𝐴𝑛Δ
(Gauss)
𝜎 (𝐸 − 𝐸𝑛), and 𝑓

(𝑘 )
𝜎 (𝐸) =∑𝑘

𝑛=1 𝐵𝑛Δ
(Cauchy)
𝜎 (𝐸 −𝐸𝑛). The difference between energy levels determined with different kernels

provides an estimate of systematic error, 𝜎1,sys(𝑎𝐸𝑛) = |𝑎𝐸𝑛,Gauss − 𝑎𝐸𝑛,Cauchy |. Figure 3 shows
a numerical example demonstrating the level of consistency: both ground and first excited states
measured with the two kernels are compatible, within statistical uncertainties.

The spectral density fitting method allows for a detailed exploration of excited states, which
are often challenging. Figure 4 shows a comparison between energy levels obtained with the GEVP
and HLT methods, demonstrating consistency. A comprehensive summary of numerical results for
meson masses obtained with the HLT method are reported together with the GEVP results in Tables
V to XVII of Ref. [29]. The mesonic spectrum for the case study theory is displayed in Fig. 5.
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Figure 3: Reconstructed spectral density, using Gaussian (left) and Cauchy (right) smearing kernels [29].

Figure 4: Comparison between GEVP (left) and HLT (right) analysis used to measure ground state and
excited state energy levels, for the pseudoscalar (PS) mesons [29].

4. Outlook

This study demonstrates the effectiveness of using smeared spectral densities, by deploying
the HLT method to the spectroscopy of flavored mesons in a special 𝑆𝑝(4) gauge theory, used as a
case study. Future development will seek to apply these techniques to other correlation functions,
and to gain access to off-shell observables. These technical developments have the potential to
impact of future studies of QCD as well as new physics scenarios, offering new insights into the
non-perturbative dynamics of strongly coupled theories.
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