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For long distances in the euclidean time the vector-vector correlator (𝜌) has an exponentially
decreasing signal-to-noise ratio. However, the vector correlator not only consists of the vector
meson but also receives contributions from a two-pion system with the same quantum numbers.
We measure all two-pion propagators with an energy lower than the mass of the resting vector
meson and employ a generalized eigenvalue problem (GEVP) to resolve the different contributing
energy states. Using those we can reconstruct the propagator with a much smaller noise at large
euclidean time distances. In this work we present an efficient way to measure two-pion propagators
and our results on reconstruction of the vector meson propagator with staggered fermions in a
(63 × 8.5) fm4 box.
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1. Introduction

The ongoing investigation of the anomalous magnetic moment of the muon, particularly through
the 𝑔− 2 experiment [1] and corresponding theoretical predictions [2], has highlighted a significant
discrepancy exceeding 4𝜎. Lattice computations, on the other hand, tend to confirm the experimen-
tal results up to 0.9𝜎 [3–6]. A particularly intriguing aspect of these studies is the long-distance
contribution that is dominated by the two-pion states that have a energy lower than the mass of
the vector meson. However, the challenge of poor signal-to-noise ratios at these long distances
complicates the analysis.

Various approaches have been proposed to address this issue. These include the bounding
method [3, 8], the fitting method [5, 7, 9–11], and data-driven techniques [4]. This article focuses on
the application of the fitting method using staggered fermions, as demonstrated in recent studies [7,
12, 13]. Given the high computational cost of connected two-pion diagrams, we present an efficient
approach leveraging low-mode averaging to improve the signal quality, offering a promising pathway
for more accurate results.

2. 𝜋𝜋 contributions to the vector correlator

The study of taste-singlet vector mesons at rest within the staggered symmetry group frame-
work, as detailed in various works [12–20], offers critical insights into the computation of two-pion
contributions to the vector meson propagator. By employing Clebsch-Gordan coefficients [21]
specific to the staggered symmetry group, it becomes possible to accurately determine these contri-
butions. The methods for computing these coefficients, which are fundamental to the construction
of the vector meson from two-pion states, are comprehensively discussed in [13].

Considering a lattice of approximately 𝐿 = 6 fm in spatial extension with a spacing of around
𝑎 = 0.13 fm, corresponding to a taste-breaking effect of Δ𝐾𝑆 = 39484 MeV2 as noted in [4], this
reveals that several two-pion states possess lower energies than the vector meson. These states are
highlighted in red in table 1.

∥ ®𝑝∥2 = 0 ∥ ®𝑝∥2 = 1 ∥ ®𝑝∥2 = 2 ∥ ®𝑝∥2 = 3 ∥ ®𝑝∥2 = 4
∥ ®𝜉∥2 = 0 0 1 1 1 1
∥ ®𝜉∥2 = 1 0 2 3 2 2
∥ ®𝜉∥2 = 2 0 2 3 2 2
∥ ®𝜉∥2 = 3 0 1 1 1 1

Table 1: Multiplicities of the the diagram up to momenta of ∥𝑝∥2 = 4 in units of 2𝜋
𝐿

. For pions at rest there
is no overlap to a vector-like state.

Due to the multiplicity of some of these spin-taste combination, a total of 10 two-pion states
contribute to the vector meson propagator. The detailed Clebsch-Gordan coefficients for these
contributions, which are crucial for the accurate construction of the vector meson from these
two-pion states, are provided in the table below.
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®𝜉2 = 0(3) ®𝜉2 = 1(2)
®𝑝2 = 1(4) 𝐶𝛼 (𝜆 ®𝑒𝑖 , ®0) = 𝜆 1√

2
𝛿𝛼𝑖 𝐶𝛼 (𝜆 ®𝑒𝑖 , ®𝑓 𝑗) = 𝜆 1√

2
𝛿𝑖 𝑗𝛿𝛼𝑖

𝐶𝛼 (𝜆 ®𝑒𝑖 , ®𝑓 𝑗) = 𝜆
2 (1 − 𝛿𝑖 𝑗)𝛿𝛼𝑖

®𝑝2 = 2 𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇𝑒 𝑗 , ®0) = 𝜆

2
√

2
𝛿𝛼𝑖 𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇 ®𝑒 𝑗 , ®𝑓𝑘) = 𝜆

2
√

2
|𝜖 𝑖 𝑗𝑘 |𝛿𝛼𝑖

𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇 ®𝑒 𝑗 , ®𝑓𝑘) = 𝜆

2
√

2
𝛿𝑘𝑖𝛿𝛼𝑖

𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇 ®𝑒 𝑗 , ®𝑓𝑘) = 𝜆

2
√

2
𝛿𝑘 𝑗𝛿𝛼𝑖

®𝑝2 = 3 𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇 ®𝑒 𝑗 + 𝜈 ®𝑒𝑘 , ®0) = 𝜆

2
√

2
𝛿𝛼𝑖 𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇 ®𝑒 𝑗 + 𝜈 ®𝑒𝑘 , ®𝑓𝑙) = 𝜆

2
√

2
𝛿𝑖𝑙𝛿𝛼𝑖

𝐶𝛼 (𝜆 ®𝑒𝑖 + 𝜇 ®𝑒 𝑗 + 𝜈 ®𝑒𝑘 , ®𝑓𝑙) = 𝜆
4 |𝜖

𝑗𝑘𝑙 |𝛿𝛼𝑖

Table 2: The Clebsch-Gordan coefficients needed for construcing the vector meson out of two-pion states.
The computation of these coefficients as well as further explanations are given in [13]. Confirmations can
be found in [7, 22].

𝑢 𝑢

𝑑

𝑑

𝜋†(®𝑥, 0)

𝜋(®𝑦, 0)

𝜋(®𝑧, 𝑡)

𝜋†( ®𝑤, 𝑡)
𝑎)

𝑢

𝑑

𝑢

𝑑

𝜋†(®𝑥, 0)

𝜋(®𝑦, 0)

𝜋(®𝑧, 𝑡)

𝜋†( ®𝑤, 𝑡)
𝑏)

𝑢 𝑑 𝑢 𝑑

𝜋†(®𝑥, 0)

𝜋(®𝑦, 0)

𝜋(®𝑧, 𝑡)
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𝑐)

𝑑

𝑢

𝑢

𝜌†(®𝑥, 0)

𝜋(®𝑧, 𝑡)

𝜋†( ®𝑤, 𝑡)
𝑑)

𝑢

𝑑

𝜌†(®𝑥, 0) 𝜌(®𝑧, 0)

𝑒)

Figure 1: The diagrams that have to be implemented for GEVP. Diagram c) vanishes identically in the 𝐼 = 1
case.

3. Computation of the connected 𝜋𝜋 → 𝜋𝜋 diagram

The general strategy to compute the diagrams that are shown in Figure 1 is to include wall
sources 𝜁 at an euclidean time 𝑡0 and apply the operators of the spin-taste-momentum combination
(𝜌/𝜋𝜉 ( ®𝑝)) as well as the inverse staggered operator (𝑀−1

𝑡1,𝑡2
). One can easily convince oneself that

diagram 𝑐) vanishes identically for 𝐼 = 1. While diagram 𝑒) can be computed straightforwardly
and diagram 𝑏) is given by the product of two diagrams of this type, the two remaining diagrams
require methods like sequential inversions in this general approach. For computing diagram 𝑑),
we can interchange the 𝜌 state and the two-pion state due to the time-reversibility of QCD. The
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corresponding scalar product is therefore given by

𝐶𝜌𝜋𝜋 (𝑡) = ⟨𝜁𝑡0𝑀−1
𝑡0,𝑡0+𝑡 𝜌 |𝑀

−1
𝑡+𝑡0,𝑡0𝜋𝑀

−1
𝑡0,𝑡0𝜋𝜁𝑡0⟩. (1)

Inversions only have to be applied at 𝑡0 time slices, and therefore the number of inversions does not
scale with the time-extent of the lattice or the domain of 𝐶𝜌𝜋𝜋 . Nevertheless, this is not the case for
the connected part of the two-pion propagator, because it requires two operators at each time slice:

𝐶conn.
𝜋𝜋𝜋𝜋 (𝑡) = ⟨𝜁𝑡0𝑀−1

𝑡0,𝑡0+𝑡𝜋𝑀
−1
𝑡0+𝑡 ,𝑡0+𝑡𝜋 |𝑀

−1
𝑡+𝑡0,𝑡0𝜋𝑀

−1
𝑡0,𝑡0𝜋𝜁𝑡0⟩. (2)

The red inversion’s column and row have a time dependence. So overall, we have a number of
inversions proportional to

𝑁𝜁 × 𝑁𝑂 × 𝑇/𝑎 (3)

where 𝑇/𝑎 is the time extent in lattice units, 𝑁𝜁 is the number of random sources, and 𝑁𝑂 is the
number of pion operators (which has a strong volume and spacing dependence, typically ranging
between 10 and 100).

We aim to reduce the cost by splitting up 𝑀−1 into its eigenvalue and residual parts. The lowest
eigenvalues 𝜆 with the corresponding eigenvectors are labeled by 𝑖, the projection of 𝑀−1 on the
orthogonal complement of the lowest eigenvectors is called 𝑀−1

𝑟 :

𝑀−1 =
∑︁
𝑖

1
𝜆𝑖

|𝑖⟩ ⟨𝑖 | + 𝑀−1
𝑟 (4)

≈
∑︁
𝑖

1
𝜆𝑖

|𝑖⟩ ⟨𝑖 | +
∑︁
𝜎

|𝜎⟩ ⟨𝜎 | 𝑀−1
𝑟 (5)

Eigenvectors and values are already computed from the preconditioning of the Dirac operator. The
vectors 𝜎 are stochastic sources normalised to give an approxiamtion of the identity. Now the
number of inversions is dominated by the ket-vectors in Equation 2, so we removed the 𝑇/𝑎 factor
in the total amount of inversions.

In figure 2, one can see the scaling of the computational time of the LMA method compared
to the usual sequential inversion with respect to the volume and the number of operators. One can
observe a better prefactor in the overall scaling, as well as a slightly better volume scaling with the
new method.

In figure 3, we compare the two-pion propagators with Goldstone taste and | ®𝑝 |2 = 2. One can
see that the new method has larger statistical noise, especially at large distances. However, this is
not problematic, as we aim to extract the contributing mode using a GEVP from the earlier time
slices. The comparison presented in figure 3 is representative of the average difference oberved
across the tastes and momenta considered. However, smaller momenta and local tastes see less
difference betwenn the two methods, and larger momenta and non-local tastes see more difference.

4. Reconstruction of the vector meson propagator

As mentioned in [13], the two-pion states are constructed in such a way that they share all
quantum numbers with the 𝜌-meson, except for the energy. More generally, the 𝜌-propagator, as

4
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L3 × T

102

103

104

t[
s]

full inversion

1500 EV + random sources

0 4 8
#operators

101

102

103

t[
s]

full inversion

1500 EV + random sources

Figure 2: On the right-hand side, one can see the volume scaling of the LMA method compared to the usual
sequential inversion. On the right-hand side, one can see the scaling with the number of operators. Both
plots use 1500 eigenvectors and 18 random wall sources 𝜁 . To estimate the residual part, we include 𝑇/2
random sources 𝜎.
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0.00

0.25
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Figure 3: Two Goldstone pions with momenta ®𝑝1 = (0, 1, 1) and ®𝑝2 = (0,−1,−1). The full propagators are
on the right-hand side, while their ratio is shown on the left-hand side. We use 18 random wall sources for
both methods. For the LMA method, we use 1500 eigenvectors and 32 sources to estimate the residual part.
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well as the 𝜋𝜋-propagator, consists of different linear combinations of states with certain quantum
numbers and varying energies. To obtain the energy eigenstates, we solve the generalized eigenvalue
problem (GEVP):

C(𝑡0 + d𝑡)𝑉 (𝑡0 + d𝑡, 𝑡0) = 𝜆(𝑡0 + d𝑡, 𝑡0)C(𝑡0)𝑉 (𝑡0 + d𝑡, 𝑡0), (6)

where the correlation matrix is

C(𝑡) =
(
𝐶𝜌𝜌 (𝑡) 𝐶𝜌𝜋𝜋 (𝑡)
𝐶𝜋𝜋𝜌 (𝑡) 𝐶𝜋𝜋𝜋𝜋 (𝑡)

)
. (7)

Here, 𝑡 and 𝑡0 are fixed values. The single-state correlation functions are then given by

𝜆̃𝑖 (𝑡) = 𝑉
†
𝑖
𝐶 (𝑡)𝑉𝑖 , (8)

where there are more than one two-pion state (in this case, ten).
To remove higher-state contaminations, we use the pencil-of-functions method [23], applying

different shifts to the 𝜌-propagator:

C(𝑡) =
©­­­­«
𝐶𝜌𝜌 (𝑡 − 4) 𝐶𝜌𝜌 (𝑡 − 3) 𝐶𝜌𝜌 (𝑡 − 2) 𝐶𝜌𝜋𝜋 (𝑡 − 2)
𝐶𝜌𝜌 (𝑡 − 3) 𝐶𝜌𝜌 (𝑡 − 2) 𝐶𝜌𝜌 (𝑡 − 1) 𝐶𝜌𝜋𝜋 (𝑡 − 1)
𝐶𝜌𝜌 (𝑡 − 2) 𝐶𝜌𝜌 (𝑡 − 1) 𝐶𝜌𝜌 (𝑡) 𝐶𝜌𝜋𝜋 (𝑡)
𝐶𝜋𝜋𝜌 (𝑡 − 2) 𝐶𝜋𝜋𝜌 (𝑡 − 1) 𝐶𝜋𝜋𝜌 (𝑡) 𝐶𝜋𝜋𝜋𝜋 (𝑡)

ª®®®®¬
,

resulting in a 13-dimensional1 GEVP in total. We choose 𝑡0 = 5𝑎 and d𝑡 = 𝑎. The eigenvalues 𝜆̃𝑖
are shown on the left-hand side of figure 4. Two noisy states, which correspond to higher excitations,
are filtered out using the pencil-of-functions method.

We fit energy plateaus to the effective energies:

𝑀
eff
𝑖
(𝑡) = 1

Δ
cosh−1

(
𝜆̃𝑖 (𝑡 + Δ) + 𝜆̃𝑖 (𝑡 − Δ)

2𝜆̃𝑖 (𝑡)

)
, (9)

where Δ = 2𝑎. The effective energies are displayed on the right-hand side of figure 4.
The decomposition of the 𝜌 propagator into different energy states is given by:

𝜌rec.(𝑡) =
∑︁
𝑖

𝑎𝑖 exp (−𝑀𝑖𝑡) ,

where the coefficients can be computed using

𝑎
eff.
𝑖
(𝑡) =

(
𝑣𝑇
𝑖
· C𝜌 •(𝑡)

)2

𝑣𝑇
𝑖
· C(𝑡) · 𝑣𝑖

exp
(
𝑀

eff.
𝑖

(𝑡) · 𝑡
)
,

where C𝜌 •(𝑡) denotes the column of C(𝑡) that correspond to the unshifted vector propagator.
Subsequently, we fit plateaus to the effective coefficients, as shown on the left-hand side of figure 5.
Although the errors are large, most of the contribution comes from a single state and we can
reconstruct the 𝜌 propagator using the available data. The first moment of this reconstruction is
shown on the right-hand side of figure 5.

110 𝜋𝜋-propagators (see Table 1) and 3 𝜌-propagators
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Figure 4: Right hand side: Eigenvalues 𝜆̃(𝑡) of the GEVP including all the 𝜋𝜋-propagators with 2(𝑝2
𝑖
+

𝑚2
𝜋𝜉
) ≤ 𝑚2

𝜌 as well as the (shifted) 𝜌-propagators. RIght hand side: Effective energies 𝑀
eff
𝑖
(𝑡) of the states

shown on the left hand side.
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i
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4
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(0
)ρ

(t
)〉

simulated

reconstructed

Figure 5: Left hand side: Coefficents 𝑎
eff.
𝑖
(𝑡) of the considered states. Right hand: Reconstruction of the

vector meson propagator 𝜌rec. (𝑡)compared to the simulated propagator 𝜌(𝑡).

5. Conclusion

In this work, we presented a refined approach to computing the connected 𝜋𝜋 → 𝜋𝜋 diagram
within the framework of staggered fermions, specifically focusing on the use of low-mode averaging
(LMA) to enhance signal quality. By reducing the computational cost associated with the inversion
of the Dirac operator, we significantly improved the efficiency of the calculation, making it more
feasible to study long-distance contributions to the vector meson propagator. The LMA method
provides a better scaling behavior compared to traditional sequential inversions, especially in terms
of volume and operator count, as demonstrated in Figs. 2 and 3.

Despite some loss in signal quality at large momenta, the GEVP approach allows us to reliably
extract relevant physics from the early time slices, where the signal remains strong. Future work
will focus on further optimization of this method, potentially incorporating smearing of the vector
operators to enhance the overlap of vector meson and two-pion propagators. This study lays the
foundation for more precise lattice calculations of the anomalous magnetic moment of the muon.
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