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The primary goal of this project is the reconstruction of quarkonium spectral functions from
thermal lattice correlators, relevant for the study of Quark-Gluon Plasma in heavy-ion collisions.
To this end, we pursue the generation of fully dynamical anisotropic HISQ ensembles, aiming
at a physical strange quark and a heavier-than-physical light quark mass, corresponding to a
300 MeV continuum pion mass. We report on tuning the gauge anisotropy and the lattice spacing
of anisotropic pure gauge ensembles with tree-level Symanzik-improved action using the gradient
flow and compare various tuning schemes. We also discuss the simultaneous tuning of the strange
quark mass and the quark anisotropy with aHISQ, using spectrum measurements on quenched
ensembles. We compare different ways to tune the quark anisotropy and discuss pion taste splittings
for aHISQ at anisotropies up to 8. Finally, we present the expressions for the aHISQ fermion force
required for dynamical simulations.
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1. Introduction

Reconstruction of spectral functions of heavy quarkonia for understanding of their melting
pattern in Quark-Gluon Plasma has been studied for over two decades [1]. Our approach to this
ill-posed problem, as explained in Ref. [2], is based on dynamical simulations with Highly Improved
Staggered Quarks [3] with anisotropy (aHISQ).

We present updates on the tuning of gauge and fermion anisotropy as well as the pion taste
splittings measured on pure gauge ensembles. We also discuss the introduction of anisotropy to the
gauge and fermion force, as required for dynamical simulations with the RHMC algorithm [4].

2. Anisotropy tuning and pion taste splittings in pure gauge

The method we use to tune the lattice spacing and the gauge anisotropy is based on the 𝑤0

scale of the gradient flow [5] [6]. Various schemes (combinations of the gauge action, gradient flow
action and observable) have different discretization effects as we explored in our previous work [2].
We continued this exploration by including schemes with Zeuthen flow [7] and improved clover
operator for the observable, and also by including finer ensembles. We tune the lines of constant
renormalized anisotropy (LCRA), i.e., find how the bare gauge anisotropy 𝜉0 changes with 𝛽 such
that the renormalized gauge anisotropy is fixed. An example for 𝜉 = 2 is shown in Fig. 1. As
one can see in the figure, only the SWC (tree-level Symanzik-improved gauge action, Wilson flow,
clover observable) and SZI (tree-level Symanzik-improved gauge action, Zeuthen flow, improved
clover observable) schemes are monotonically increasing in the 𝛽 range of interest towards 𝜉0 = 2 at
𝛽 → ∞. Non-monotonicity of 𝜉0(𝛽) may translate to a non-monotonic approach to the continuum
limit which we prefer to avoid.

We fit the bare gauge anisotropy as a function of 𝛽 (i.e. 𝜉0 = 𝜉0(𝛽) ) at fixed renormalized
anisotropy 𝜉 with a Padè functional form:

𝜉0(𝛽) = 𝜉

(
1 + 10

𝛽

−𝑎1 + 𝑎2/𝛽
1 − 𝑎3/𝛽

)
, (1)

the same one that was used in Ref. [8] (up to rescaling 𝛽 by 5/3 to follow the MILC convention).
The fit parameters for 𝜉 = 2 are

𝑎1 = 0.0594 ± 0.0004 , 𝑎2 = 0.396 ± 0.004 , 𝑎3 = 6.73 ± 0.01. (2)

For comparison, the corresponding fit parameters (in our 𝛽 convention) from Ref. [8] are

𝑎1 = 0.0578007 , 𝑎2 = 0.375841 , 𝑎3 = 6.5674. (3)

Performing the same fit of 𝜉0(𝛽) for 𝜉 = 4 LCRA we get

𝑎1 = 0.06 ± 0.03 , 𝑎2 = 0.3 ± 0.3 , 𝑎3 = 6.1 ± 0.8. (4)

The LCRA 𝜉 = 2 and 𝜉 = 4 data together with the fits and the fit of Ref. [8] for 𝜉 = 2 are shown
in Fig. 2. One can see that the points for 𝜉 = 2 follow the curve better than for 𝜉 = 4, which may
be expected since the 𝜉 = 4 ensembles correspond to coarser lattices at the same values of 𝛽. One
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Figure 1: 𝜉0 (𝛽) at fixed 𝜉 for various schemes. “S” stands for tree-level Symanzik-improved ac-
tion/flow/observable, “W” for Wilson, “Z” for Zeuthen, “C” for clover and “I” for improved clover dis-
cretization.

can also notice that the fit of Ref. [8] (dotted curve) in the upper panel does not pass through the
𝛽 = 6.9 point, which is reasonable since that work considered only ensembles with 𝛽 ⩾ 7.

As described in Ref. [2], our tuning of the bare fermion anisotropy 𝜉
𝑓

0 is done using the
dispersion relation for the fictitious 𝜂𝑠𝑠 meson. We experimented, however, with an alternative
method where meson correlators are measured in the temporal and in one spatial direction and the
ratio of the extracted masses defines the renormalized fermion anisotropy:

𝜉 𝑓 =
𝑎𝜎𝑀𝜎

𝑎𝜏𝑀𝜏

. (5)

The two effective mass curves are plotted in Fig. 3, where horizontal and vertical axes have been
rescaled by the renormalized anisotropy 𝜉 = 2 for the temporal case. The fermion anisotropy for this
ensemble was tuned with the dispersion relation method and the coincidence of the two effective
mass curves for later times shows the consistence of the two methods. At early times one can notice
a minor discrepancy, which stems from the different discretization effects in the two directions.

Our results for the pion taste splittings at 𝑎 = 0.16 fm for 𝜉 = 1, 2, 4, 8 are presented in
Fig. 4. We notice that the known symmetry pattern for staggered mesons at 𝜉 = 1 [9] shifts abruptly
to a new pattern at 𝜉 = 2 that remains as we increase 𝜉. Our limited studies with naive staggered
fermions indicate that in that case the pattern changes more slowly with increasing the renormalized
anisotropy 𝜉.
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Figure 2: Pade functional form fitted to data for 𝜉 = 2 and 𝜉 = 4 (dashed curves). The dotted curve
corresponds to Ref. [8].

We also note that the 𝜉 = 8 splittings are preliminary since larger statistics are needed for
accurate fits.

3. Dynamical simulation of aHISQ with RHMC

Performing dynamical simulations with the anisotropic Highly Improved Staggered Quark
(aHISQ) action using the RHMC algorithm [4] within the MILC codebase requires calculation of
the force, which determines the updating of the momenta within the molecular dynamics evolution.
The force is the sum of the gauge and fermion part.

The gauge force is defined as:

𝑔𝑥,𝜇 =
𝜕𝑆𝑔

𝜕𝑈𝑥,𝜇

(6)

where 𝑆𝑔 is the anisotropic tree-level Symanzik-improved gauge action:

𝑆𝑔 = 𝛽
1
𝜉0

[𝑐0P𝜎𝜎 + 𝑐1R𝜎𝜎] + 𝛽𝜉0 [𝑐0P𝜎𝜏 + 𝑐1R𝜎𝜏] . (7)

In Eq. (7) P𝜎𝜎 and R𝜎𝜎 are the sums of purely spatial plaquettes and rectangles, whereas P𝜎𝜏

and R𝜎𝜏 the spatial-temporal ones. Coefficients 𝑐0 and 𝑐1 were determined in Ref. [10].
Substituting Eq. (7) in (6) one can notice that for spatial directions 𝜇 = 1, 2, 3 the force gets

contributions from both spatial-spatial and spatial-temporal staples, whereas for 𝜇 = 4 only spatial-
temporal staples contribute.

Now, for the fermion contribution to the force, we begin by writing down a generic fermion
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Figure 3: Effective mass plot for correlators measured in the 𝜏 and 𝑧 directions on an ensemble with 𝜉 = 2
and 𝑎 = 0.16 fm.

action on an anisotropic lattice:

𝑆 𝑓 = 𝑎3
𝜎𝑎𝜏

∑︁
𝑥

𝜓̄(𝑥)𝑀𝑥,𝑦𝜓(𝑦) (8)

where 𝑀𝑥,𝑦 = 𝐷𝑥,𝑦 + 𝑚𝛿𝑥,𝑦 . We introduce dimensionless mass 𝑚̂ as 𝑚̂ = 𝑎𝜎𝑚 and this leads to
the dimensionless field definition as 𝜓̂ = 𝜓/(𝑎𝜎

√
𝑎𝜏). Then

𝐷𝑥,𝑦 = 𝐷𝑥,𝑦;𝜎 + 𝐷𝑥,𝑦;𝜏 =
1
𝑎𝜎

𝐷̂𝑥,𝑦;𝜎 + 1
𝑎𝜏

𝐷̂𝑥,𝑦;𝜏 =
1
𝑎𝜎

𝐷̂𝑥,𝑦;𝜎 + 𝜉

𝑎𝜎

𝐷̂𝑥,𝑦;𝜏 (9)

where 𝜉 = 𝑎𝜎/𝑎𝜏 is the renormalized anisotropy. Then the action becomes:

𝑆 𝑓 =
∑︁
𝑥

¯̂𝜓(𝑥)
[
𝐷̂𝑥,𝑦;𝜎 + 𝜉𝐷̂𝑥,𝑦;𝜏 + 𝑚̂𝛿𝑥,𝑦

]
𝜓̂(𝑦) (10)

As usual, the parameters 𝑚 and 𝜉 have to be substituted by their bare values 𝑚0 and 𝜉
𝑓

0 in the action,
so we finally have:

𝑆 𝑓 =
∑︁
𝑥

¯̂𝜓(𝑥)
[
𝐷̂𝑥,𝑦;𝜎 + 𝜉

𝑓

0 𝐷̂𝑥,𝑦;𝜏 + 𝑚0𝛿𝑥,𝑦

]
𝜓̂(𝑦). (11)

It should be mentioned that the bare fermion anisotropy 𝜉 𝑓

0 is different from the bare gauge anisotropy
𝜉0 as the discretization effects in gauge and fermion sectors are quite different.
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Figure 4: The pion taste splittings for various anisotropies at 𝑎𝜎 = 0.16 fm.

Following Ref. [11] we can now write down the kernel of the anisotropic smeared staggered
fermion action:

𝑀𝑥,𝑦 = 2𝑚0 𝛿𝑥,𝑦 +
∑︁

𝜇=1,2,3
𝜂𝑥,𝜇

[
𝑉𝑥,𝜇𝛿𝑥,𝑦− 𝜇̂ −𝑉

†
𝑥− 𝜇̂,𝜇𝛿𝑥,𝑦+𝜇̂

]
+𝜉 𝑓

0 𝜂𝑥,4

[
𝑉𝑥,4𝛿𝑥,𝑦−4̂ −𝑉

†
𝑥−4̂,4

𝛿𝑥,𝑦+4̂

]
≡ 2𝑚0𝛿𝑥,𝑦 + 𝐷𝑥,𝑦 . (12)

The links 𝑉 = 𝑉 (𝑈) are the smeared links that are constructed from the original links 𝑈; 𝜂𝑥,𝜇 are
the staggered phases.

The fermion force is defined as:

𝑓𝑥,𝜇 =
𝜕𝑆 𝑓

𝑈𝑥,𝜇

. (13)

Up until Eq. (2.5) of Ref.[11] everything is independent of anisotropy. Care is however needed as
one makes the step from Eq. (2.5) to (2.6) of Ref. [11] when carrying out the derivatives

𝜕 [𝐷†]𝑚,𝑛

𝜕𝑈𝑥,𝜇

,
𝜕𝐷𝑚,𝑛

𝜕𝑈𝑥,𝜇

.

6
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Using the chain rule,

𝜕𝐷𝑚,𝑛

𝜕𝑈𝑥,𝜇

=
∑︁
𝑦,𝜈

[
𝜕𝐷𝑚,𝑛

𝜕𝑉𝑦,𝜈

𝜕𝑉𝑦,𝜈

𝜕𝑈𝑥,𝜇

+
𝜕𝐷𝑚,𝑛

𝜕𝑉
†
𝑦,𝜈

𝜕𝑉
†
𝑦,𝜈

𝜕𝑈𝑥,𝜇

]
,

𝜕 [𝐷†]𝑚,𝑛

𝜕𝑈𝑥,𝜇

=
∑︁
𝑦,𝜈

[
𝜕 [𝐷†]𝑚,𝑛

𝜕𝑉𝑦,𝜈

𝜕𝑉𝑦,𝜈

𝜕𝑈𝑥,𝜇

+
𝜕 [𝐷†]𝑚,𝑛

𝜕𝑉
†
𝑦,𝜈

𝜕𝑉
†
𝑦,𝜈

𝜕𝑈𝑥,𝜇

]
. (14)

The derivatives
𝜕𝑉𝑦,𝜈

𝜕𝑈𝑥,𝜇

,
𝜕𝑉

†
𝑦,𝜈

𝜕𝑈𝑥,𝜇

depend only on the smearing and not on the Dirac operator, so the fermion anisotropy does not
affect them. The other four derivatives appearing in Eq. (14) can be calculated using Eq. (12). We
find:

𝜕𝐷𝑚,𝑛

𝜕𝑉𝑦,𝜈

= 𝜂𝑚,𝜈𝛿𝑚,𝑦𝛿𝑚,𝑛−𝜈̂ ,

𝜕𝐷𝑚,𝑛

𝜕𝑉
†
𝑦,𝜈

= −𝜂𝑚,𝜈𝛿𝑚−𝜈̂,𝑦𝛿𝑚,𝑛+𝜈̂ ,

𝜕𝐷
†
𝑚,𝑛

𝜕𝑉𝑦,𝜈

= −𝜂𝑛,𝜈𝛿𝑛−𝜈̂,𝑦𝛿𝑛,𝑚+𝜈̂ ,

𝜕𝐷
†
𝑚,𝑛

𝜕𝑉
†
𝑦,𝜈

= 𝜂𝑛,𝜈𝛿𝑛,𝑦𝛿𝑛,𝑚−𝜈̂ (15)

for 𝜈 ≠ 4 and:

𝜕𝐷𝑚,𝑛

𝜕𝑉𝑦,4
= 𝜉

𝑓

0 𝜂𝑚,4𝛿𝑚,𝑦𝛿𝑚,𝑛−4̂,

𝜕𝐷𝑚,𝑛

𝜕𝑉
†
𝑦,4

= −𝜉 𝑓

0 𝜂𝑚,4𝛿𝑚−4̂,𝑦𝛿𝑚,𝑛+4̂,

𝜕𝐷
†
𝑚,𝑛

𝜕𝑉𝑦,4
= −𝜉 𝑓

0 𝜂𝑛,4𝛿𝑛−4̂,𝑦𝛿𝑛,𝑚+4̂,

𝜕𝐷
†
𝑚,𝑛

𝜕𝑉
†
𝑦,4

= 𝜉
𝑓

0 𝜂𝑛,4𝛿𝑛,𝑦𝛿𝑛,𝑚−4̂ (16)

for 𝜈 = 4.
Substituting Eqs. (15) and (16) into Eq. (14) and the result into Eq. (2.5) of Ref. [11] we get an

anisotropic generalization of Eq. (2.6) of Ref.[11]

[ 𝑓𝑥,𝜇]𝐴𝐵 =
∑︁
𝑦

(−1)𝑦
[∑︁
𝜈≠4

𝜂𝑦,𝜈

( 𝜕 [𝑉𝑦,𝜈]𝐶𝐷

𝜕 [𝑈𝑥,𝜇]𝐴𝐵
[ 𝑓 (0)𝑦,𝜈 ]𝐶𝐷 +

𝜕 [𝑉†
𝑦,𝜈]𝐶𝐷

𝜕 [𝑈𝑥,𝜇]𝐴𝐵
[ 𝑓 (0)†𝑦,𝜈 ]𝐶𝐷

)
+𝜉 𝑓

0 𝜂𝑦,4

( 𝜕 [𝑉𝑦,4]𝐶𝐷

𝜕 [𝑈𝑥,𝜇]𝐴𝐵
[ 𝑓 (0)

𝑦,4 ]𝐶𝐷 +
𝜕 [𝑉†

𝑦,4]𝐶𝐷

𝜕 [𝑈𝑥,𝜇]𝐴𝐵
[ 𝑓 (0)†

𝑦,4 ]𝐶𝐷

)]
, (17)

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
1
2
9

Towards dynamical simulations with the anisotropic HISQ action Yannis Trimis

where
[ 𝑓 (0)𝑦,𝜈 ]𝐶𝐷 =

∑︁
𝑙

𝛼𝑙

(
[𝑌 𝑙

𝑦+𝜈]𝐷 [𝑋 𝑙∗
𝑦 ]𝐶 + [𝑋 𝑙

𝑦+𝜈]𝐷 [𝑌 𝑙∗
𝑦 ]𝐶

)
(18)

and
[𝑌 𝑙

𝑥]𝐴 = [𝐷𝑥,𝑦]𝐴𝐵 [𝑋 𝑙
𝑦]𝐵, (19)

where now 𝐷 is the Dirac operator given in Eq. (12). The color indices are explicitly indicated with
uppercase roman letters.

Factors of 𝜉 𝑓

0 appear explicitly in Eq. (17) but they are also present in 𝐷𝑥,𝑦 in Eq. (19) (cf.
12). Thus, if we rescale all temporal smeared links 𝑉𝑥,4 by 𝜉

𝑓

0 then Eq. (17) becomes identical to
Eq. (2.6) of Ref. [11] and the isotropic RHMC code can be used.

4. Conclusion

We explored tuning of the parameters and measured the pion taste splittings for the anisotropic
HISQ action in the quenched approximation, reaching renormalized anisotropies up to 𝜉 = 8. We
also introduced anisotropy in the RHMC updating algorithm within the MILC code, which allows
us to study its behavior and proceed to the tuning of 2 + 1 dynamical aHISQ ensembles, where
all parameters– coupling, quark masses, bare gauge and fermion anisotropies– have to be tuned
simultaneously.
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