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local multiquark interpolators are expensive in this framework because the cost of the contractions
scales with a high power of the number of Laplacian eigenvectors. To address this, a position-space
sampling method within distillation is presented that avoids this cost scaling. Our simulations
show that this method works well for meson operators, but also for local tetraquark operators. In
a preliminary study, we investigate the relevance of the latter for the ground state energy of the
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1. Introduction

Many exotic hadrons have been discovered in the last decade, including the 𝑇𝑐𝑐 (3875)+
tetraquark observed and studied by the LHCb collaboration [1, 2] but also the 𝑑∗(2380) dibaryon
observed by the WASA-at-COSY collaboration [3]. The preferred way to study exotic hadrons
using lattice QCD is Lüscher’s finite-volume quantization conditions, which require finite-volume
energies. The standard way to obtain these energies is the variational method, which requires using
many operators carrying the quantum numbers of the state of interest. Since the inner structure
of these exotic hadrons is generally unknown, it is desirable to use a variety of operators with
different spin, color and spatial structures to arrive at the correct low-lying spectrum. As bound
states or resonances, exotic hadrons are in some sense local, so one wants to include local operators
in addition to bilocal scattering ones. A good framework for studying bilocal scattering operators
is distillation [4], and it has been used successfully for tetraquarks, nucleon-nucleon scattering and
dibaryons [5, 6]. Although distillation has also been used for local multiquark operators [7, 8], it
is computationally expensive due to the high-rank tensors that appear. In this work, we present
a position-space sampling method that makes local multiquark operators more affordable within
distillation.1

2. Distillation Method

The distillation method described in [4, 10] uses Laplacian Heaviside smearing for the quarks.
This is done by replacing the quark field 𝜓(𝑡) by the spatially smeared field 𝜓sm(𝑡) = S(𝑡) 𝜓(𝑡)
where the smearing kernel S(𝑡) = 𝑉 (𝑡)𝑉 (𝑡)† is defined by the matrix

𝑉 (𝑡) =
(
𝑣 (1) (𝑡), 𝑣 (2) (𝑡), . . . , 𝑣 (𝑁 ) (𝑡)

)
(1)

which contains eigenvectors of the gauge covariant Laplace operator Δ(𝑡) on the lattice. More
precisely, 𝑉 (𝑡) contains those 𝑁 eigenvectors 𝑣 (𝑘 ) (𝑡) of −Δ(𝑡) with the smallest eigenvalues. The
Laplacian and thus its eigenvectors have a time dependence since they are defined in terms of the
gauge links on a specific time slice. We will also refer to the 𝑣 (𝑘 ) (𝑡) as Laplace modes and call 𝑘
the Laplace mode index.

The Laplacian acts on a 3|Λ3 |-dimensional color and position space (we use Λ3 to denote the
spatial lattice) so S is a projector from this large space to an 𝑁-dimensional subspace spanned
by the lowest 𝑁 eigenvectors of −Δ(𝑡). Usually, 𝑁 is chosen to be of the order of a few tens or
hundreds. In this work, we used 𝑁 = 32 throughout. Thus, the "distillation" space spanned by these
eigenvectors is small enough that the Dirac operator 𝐷 𝑓 (for flavour 𝑓 ) can be inverted exactly in
this subspace. The 4𝑁 × 4𝑁 matrix obtained in this way is called a perambulator and is defined as

(𝜏 𝑓 )𝛼𝛽 (𝑡′, 𝑡) = 𝑉 (𝑡′)† · (𝐷−1
𝑓 )𝛼𝛽 (𝑡′, 𝑡) · 𝑉 (𝑡). (2)

Here we have explicitly written out the spinor indices, but suppressed the Laplace mode, color and
position indices. To compute this matrix we need four inversions of the Dirac operator on each

1Recently, another approach was proposed to solve this problem [9].
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Laplace mode at time 𝑡. Then we project the solutions onto the Laplace modes at time 𝑡′. Finally,
the smeared propagator is given by

(𝐷−1
sm, 𝑓 )𝛼𝛽 (𝑡

′, 𝑡) = 𝑉 (𝑡′) · (𝜏 𝑓 )𝛼𝛽 (𝑡′, 𝑡) · 𝑉 (𝑡)† (3)

in terms of the perambulator and Laplace modes.
To demonstrate how the distillation method works we consider the simple case of a charged

pion using the operator
O 𝜋 (𝑡) =

∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 (𝑑𝛾5𝑢) (𝒙, 𝑡) (4)

with momentum 𝒑. The resulting two-point function is then given by

𝐶 (𝑡′, 𝑡) =
∑︁

𝒙′ ,𝒙∈Λ3

𝑒−𝑖𝒑 · (𝒙
′−𝒙) 〈tr [𝛾5𝐷

−1
𝑢 (𝒙′, 𝑡′; 𝒙, 𝑡) · 𝛾5𝐷

−1
𝑑 (𝒙, 𝑡; 𝒙′, 𝑡′)

]〉
𝐺

(5)

where ⟨. . .⟩𝐺 is the expectation value over the gauge fields only. Plugging in the expression for the
smeared propagator (3) we get the smeared correlator

𝐶sm(𝑡′, 𝑡) =
〈
tr
[
Φ(𝑡′) · 𝛾5𝜏𝑢 (𝑡′, 𝑡) · Φ(𝑡)† · 𝛾5𝜏𝑑 (𝑡, 𝑡′)

]〉
𝐺

(6)

where we have collected the momentum projection and the eigenvectors in the so-called mode
doublets Φ(𝑡) defined as

Φ(𝑘,𝑙) (𝑡) =
∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 𝑣 (𝑘 )𝑎 (𝒙, 𝑡)∗ 𝑣 (𝑙)𝑎 (𝒙, 𝑡) (7)

which form an 𝑁 ×𝑁 matrix. Here we have explicitly written out the position index 𝒙 and the color
index 𝑎. Using this matrix for the contractions is more practical than recomputing or storing the
Laplacian eigenvectors.

Next, we will look at more complicated operators where we will explain the difficulties that
arise for local multiquark operators. Before we do so, let us briefly address the question of how
we should scale the number of eigenvectors 𝑁 for different lattice spacings and volumes. In [10]
it was shown that to keep the physical smearing radius constant we have to scale 𝑁 proportional to
the physical volume 𝑉 = 𝑎3 |Λ3 | (𝑎 is the lattice spacing). Thus, larger physical volumes result in a
bigger computational cost for calculating the perambulators, but also the contractions become more
expensive which poses a problem for local multiquark interpolators which we will discuss next.

2.1 Local multiquark operators in distillation

Like for mesons, distillation can also be used for baryons [6]. But where for mesons we
introduced the mode doublets Φ(𝑘,𝑙) (𝑡), for baryon correlators we have to introduce a different
tensor to incorporate the Laplace modes and the momentum projection: the so-called mode triplets.
They are defined by

Φ(𝑘,𝑙,𝑚) (𝑡) =
∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 𝜀𝑎𝑏𝑐 𝑣
(𝑘 )
𝑎 (𝒙, 𝑡)𝑣 (𝑙)

𝑏
(𝒙, 𝑡)𝑣 (𝑚)

𝑐 (𝒙, 𝑡). (8)

This is a rank 3 tensor because we get one Laplace mode index for each quark in the baryon operator.
Similarly, two-point functions of bilocal meson-meson and baryon-baryon scattering operators can
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be written as tensor contractions of perambulators with mode doublets and triplets respectively.
This means that for mesons and meson scattering the computational cost of the contractions scales
as 𝑁3, since they consist of matrix-matrix multiplications. For baryons and baryon scattering, it
scales as 𝑁4 because we are contracting matrices with rank 3 tensors.

It is more difficult when we consider local multiquark operators. For the𝑇𝑐𝑐 (3875)+ tetraquark
and the 𝑑∗(2380) dibaryon, these operators are of the form (spin and color structure suppressed)

O𝑇 (𝑡) ∼
∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 (𝑐𝑐𝑢̄𝑑) (𝒙, 𝑡) and O𝐻 (𝑡) ∼
∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 (𝑢𝑢𝑢𝑑𝑑𝑑) (𝒙, 𝑡). (9)

In these cases, the mode doublets and triplets have to be replaced by rank 4 and rank 6 tensors
respectively. As a result, the cost of the contractions scales as 𝑁5 and 𝑁7. This is very expensive,
even for a relatively small 𝑁 , such as 𝑁 = 32, as used in our case. In addition, as mentioned earlier,
to have a constant smearing radius we have to scale 𝑁 proportional to the physical volume. This
makes local tetraquark and hexaquark operators prohibitively expensive in large volumes.

The problem here is that by summing over 𝒙 first and then over the Laplace mode indices, we
construct high-rank tensors which make the contractions expensive. However, summing over the
sink and source positions last, as in (5), results in a computational cost proportional to 𝑁 |Λ3 |2 for
computing the smeared propagator 𝐷−1

sm (cf. (3))2 and |Λ3 |2 for the contractions. This has a better
volume scaling but is still too expensive. The solution we propose here is to change the summation
order, but then make computing 𝐷−1

sm and the contractions affordable by using a position-space
sampling method. This will be discussed in the next section.

3. Position-space sampling

In this section, we explain the position-space sampling method we propose for local multiquark
operators within distillation. The idea is that we compute the smeared propagator (3) only on random
subspaces Λ̃3 ⊂ Λ3 instead of on the full spatial lattice Λ3. More precisely we choose a random
subspace Λ̃′

3 for the sink and another one Λ̃3 for the source and compute 𝐷−1
sm, 𝑓 (𝒙

′, 𝑡′; 𝒙, 𝑡) for all
𝒙′ ∈ Λ̃′

3 and 𝒙 ∈ Λ̃3. For this, we need the perambulator and the Laplace modes on these two
subspaces. To compute the correlator, we then only sum over Λ̃′

3 and Λ̃3. For the charged pion (cf.
(5)) the two-point function in position-space sampling is

𝐶sm(𝑡′, 𝑡) =
〈 |Λ3 |2

|Λ̃′
3 | |Λ̃3 |

∑︁
𝒙′∈Λ̃′

3
𝒙∈Λ̃3

𝑒−𝑖𝒑 · (𝒙
′−𝒙) tr

[
𝛾5𝐷

−1
𝑢, sm(𝒙′, 𝑡′; 𝒙, 𝑡) · 𝛾5𝐷

−1
𝑑, sm(𝒙, 𝑡; 𝒙

′, 𝑡′)
] 〉
𝐺,Λ̃3

(10)

where we have added the prefactor |Λ3 |2/(|Λ̃′
3 | |Λ̃3 |) to ensure the correct normalization. The

expectation value ⟨. . .⟩𝐺,Λ̃3
is now an expectation value both over the gauge fields and over the two

random subspaces. Thus, by using position-space sampling, we get a stochastic estimator for the
correlator that is different from the one in (6).

Two natural choices for these subspaces are fully random subspaces of Λ3 and randomly
displaced sparse grids. We chose the latter. More specifically, we used subspaces of the form

Λ̃3 = {𝑎𝒏 + 𝒙̃ |𝑛𝑘 = 0, 𝑁sep, 2𝑁sep, . . . , 𝑁𝑠 − 𝑁sep (𝑘 = 1, 2, 3)} (11)

2Computing 𝐷−1
sm also involves a contraction that scales as 𝑁2 |Λ3 | (similar volume scaling as 𝑁 |Λ3 |2), but 𝑁 ≪ |Λ3 |.
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with a point separation 𝑁sep which divides the spatial extent 𝑁𝑠 of the lattice (in lattice units)
and with a random offset 𝒙̃ ∈ Λ3. These are similar to the sparse grids used in [11, 12], but the
random displacement that we added ensures that we sample from the full spatial lattice. We chose
to sample 𝒙̃ randomly for each gauge configuration and source time 𝑡, and also separately at the
sink and the source. By splitting the expectation value as ⟨. . .⟩𝐺,Λ̃3

= ⟨⟨. . .⟩𝐺⟩Λ̃3
one can show

that using these random sparse grids we get an estimator for the correlator that is unbiased. Thus,
randomly displacing the sparse grids ensures a full momentum projection. Consequently, the point
separation 𝑁sep only affects the variance of this estimator, which can be reduced by decreasing
𝑁sep. In addition, keeping the offsets the same for all sink times 𝑡′ preserves correlations between
different 𝑡′.

Using this method we avoid the cost scaling of the contractions with a high power of the number
of Laplace modes 𝑁 , and we reduce the 𝑁 |Λ3 |2 = 𝑁𝑁6

𝑠 scaling down to an 𝑁
��Λ̃3

��2 = 𝑁 (𝑁𝑠/𝑁sep)6

scaling. If we increase the physical volume 𝑉 , we want to keep 𝑎𝑁sep constant which results in a
𝑉3 scaling of the computational cost. This is a huge improvement compared to the 𝑉5 or 𝑉7 scaling
for local tetraquark or hexaquark operators without position-space sampling. So this method makes
local multiquark interpolators possible in larger volumes. However, we still need to investigate
which value to choose for the point separation 𝑁sep. This will be addressed in the next section.

4. Results for meson and tetraquark operators

In this section, we will show finite-volume spectroscopy results for meson and tetraquark
operators using the position-space sampling method that we have introduced. We will study the
variance of the position-space sampling estimator (10) as a function of the point separation 𝑁sep in
the sparse grids. In a preliminary study, we will also investigate the influence of local tetraquark
operators on the ground state energy of the 𝑇𝑐𝑐 tetraquark. All errors in this section only include
the statistical error that we computed using the Γ-method [13].

4.1 Lattice setup

The simulation was performed on the B450 CLS [14] gauge ensemble using 𝑂 (𝑎)-improved
Wilson fermions at the 𝑆𝑈 (3) flavour symmetric point with𝑚𝜋 = 𝑚𝐾 ≈ 417 MeV. This is a 64×323

lattice with 𝛽 = 3.46 which corresponds to a lattice spacing of 𝑎 = 0.0762 fm. For the valence
charm quarks, we used the same fermion action tuned such that the 𝐷 meson mass matches the
average of the physical 𝐷0, 𝐷+ and 𝐷𝑠 meson masses. We used all 1612 configurations with 8
source times each. The number of Laplace modes was always 𝑁 = 32.

4.2 Dependence on 𝑵sep: single-meson operators

First, we applied the position-space sampling approach to the charged pion operator (4). We
computed the pion two-point function for different point separations 𝑁sep and extracted the energy
from a plateau fit to the effective mass. To isolate the dependence on 𝑁sep, we used the same plateau
range for all point separations. The resulting energies for zero momentum are shown as a function
of 𝑁sep on the left of Figure 1. The point where 𝑁sep = 1 corresponds to using the full spatial lattice,
i.e. no position-space sampling, and increasing values of 𝑁sep correspond to increasingly sparse
grids. There is no increase in error compared to the 𝑁sep = 1 value, even when going to 𝑁sep = 16,

5
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Figure 1: Pion (left) and 𝐷 meson (right) energy for zero momentum. They are plotted as a function of the
point separation 𝑁sep in the sparse grids used for position-space sampling.

which corresponds to using only 2 points in each spatial direction. We repeated this calculation for
momentum 𝒑 = 2𝜋

𝐿
(1, 0, 0) and also found no increase in error up to 𝑁sep = 8, but a small increase

for 𝑁sep = 16. In all cases, the energy was consistent with the 𝑁sep = 1 value, as expected from an
unbiased estimator.

Next, we repeated the same analysis for the 𝐷 meson using O𝐷 (𝑡) = ∑
𝒙∈Λ3 𝑒

−𝑖𝒑 ·𝒙 (𝑢𝛾5𝑐) (𝒙, 𝑡)
as the interpolating operator. The results are shown on the right of Figure 1. Like for the pion, we
see no increase in error up to 𝑁sep = 8, but we see a slight increase for 𝑁sep = 16. For momentum
𝒑 = 2𝜋

𝐿
(1, 0, 0), we also found no increase in error up to 𝑁sep = 8, but a bigger increase for

𝑁sep = 16. The energy was always consistent with the 𝑁sep = 1 value. We obtained similar results
for the 𝐷∗ meson using the operator O𝐷∗ (𝑡) = ∑

𝒙∈Λ3 𝑒
−𝑖𝒑𝒙 (𝑢𝛾𝑖𝑐) (𝒙, 𝑡).

Our conclusion from these results is that the statistical error from position-space sampling for
these two-point functions is negligible compared to the Monte Carlo error starting at 𝑁sep = 8. As
a consequence, using a smaller point separation 𝑁sep doesn’t reduce the error any further.

4.3 Dependence on 𝑵sep: tetraquark operators

Next, we applied the position-space sampling method to tetraquark operators relevant for the
𝑇𝑐𝑐 (3875)+ which is a 𝐼 (𝐽𝑃) = 0(1+) state with minimal quark content 𝑐𝑐𝑢̄𝑑. For this, we used the
local 𝐷𝐷∗ operator

O𝐷𝐷∗

local (𝑡) =
∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 (𝑢𝛾5𝑐 𝑑𝛾𝑖𝑐) (𝒙, 𝑡) − {𝑢 ↔ 𝑑} (12)

as well as the local diquark-antidiquark operator

Odiq
local( 𝒑, 𝑡) =

∑︁
𝒙∈Λ3

𝑒−𝑖𝒑 ·𝒙 (𝜀𝑎𝑏𝑐 𝑐𝑇𝑏 𝐶𝛾𝑖 𝑐𝑐 𝜀𝑎𝑑𝑒 𝑢𝑑 𝐶𝛾5 𝑑
𝑇

𝑒 ) (𝒙, 𝑡) (13)

which is in the (3𝑐 ⊗ 3𝑐)1𝑐 color representation. Here 𝐶 is the charge conjugation matrix and
the Roman letters are color indices. For these two operators, we only used zero momentum, so
they belong to the rest frame 𝑇+

1 irreducible representation of the octahedral group. Like for the
quark-antiquark mesons, we computed the two-point functions for these operators for different point
separations 𝑁sep. To obtain plateau values whose errors we can compare, we fitted constants to
the effective masses at late times. However, these fit results are not expected to be the correct
finite-volume energy, since these operators are not optimized and the multiparticle energies are
closely spaced. To actually extract the ground state energy, we later applied the variational method.
In Figure 2 we show the plateau values resulting from these fits. Since the computational cost for

6
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Figure 2: Plateau values obtained from a constant fit to the effective masses of local 𝐷𝐷∗ (left) and diquark-
antidiquark (right) two-point functions with zero momentum. They are plotted as a function of the point
separation 𝑁sep in the sparse grids used for position-space sampling.

computing these two-point functions scales as 𝑁sep
−6, and since the contractions are more expensive

than for single mesons, the smallest point separation we used is 𝑁sep = 4. However, as with the
meson operators, we see no reduction in error when going from 𝑁sep = 8 to 𝑁sep = 4 for either
operator. So we conclude that also for these more complicated operators, the statistical error is
dominated by the Monte Carlo error starting at 𝑁sep = 8. This is the value for 𝑁sep that we use for
the remaining calculations.

4.4 Influence of local operators on 𝑻𝒄𝒄 spectrum

The influence of local operators on the ground state energy of the 𝑇𝑐𝑐 tetraquark has been
discussed in the literature [15, 16]. To investigate this, we used two bilocal 𝐷𝐷∗ scattering
operators to extract the ground state energy of the 𝑇𝑐𝑐 using the variational method. We then added
the two local operators (12, 13) to this operator basis to study their effect on the energy. The two
bilocal operators that we used are

O𝐷𝐷∗

bilocal(𝑡) =
∑︁

𝒑2=𝑛( 2𝜋
𝐿 )2

∑︁
𝒙1,𝒙2∈Λ3

𝑒−𝑖𝒑 · (𝒙1−𝒙2 ) (𝑢𝛾5𝑐) (𝒙1, 𝑡) (𝑑𝛾𝑖𝑐) (𝒙2, 𝑡) − {𝑢 ↔ 𝑑} (14)

for 𝑛 = 0, 1. They are also in the rest frame 𝑇+
1 irreducible representation. To compute the full

correlator matrix of all four operators, we used the mode doublets for the bilocal operators and
position-space sampling for the local operators. We then extracted the lowest energy levels using
the generalized eigenvalue problem (GEVP) method described in [17].

In Figure 3 we show the effective masses of the two lowest energy levels when using only the
two bilocal operators (left) and when including the two local operators (right). We extracted the
ground state energy using a plateau fit. As the energy of the 𝑇𝑐𝑐 was measured to be slightly below
the 𝐷𝐷∗ mass threshold, we show the 𝑚𝐷 + 𝑚𝐷∗ value that we computed on this ensemble as a
reference. In the GEVP we set 𝑡0/𝑎 = 13 such that the condition [17] 𝑡0 ≥ 𝑡/2 is satisfied over the
whole plateau range we used for the fit. We see that the ground state energy decreases slightly when
the local operators are included. The resulting value is 𝑎𝐸 = 1.48696(98), and the difference is
𝑎Δ𝐸 = 0.00032(3) when taking the correlation into account. This is a significant decrease, but it
is small compared to the error of the energy.

For this study, we only used two nonlocal operators, which is a small number. Since in the
noninteracting limit, the first excited state is doubly degenerate, including further bilocal operators
could result in a similar decrease. We need to investigate this before we can make a final statement
about the influence of local operators on the ground state energy of the 𝑇𝑐𝑐. In addition to this small
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Figure 3: Effective masses of the two lowest energy levels of the 𝑇𝑐𝑐 tetraquark. They were obtained using
the variational method for the two bilocal operators (left) and when also including the two local operators
(right). The red line shows the ground state energy extracted using a plateau fit and the orange dashed line
shows the 𝑚𝐷 + 𝑚𝐷∗ value for this ensemble.

shift in the lowest level, we see a larger shift in the first excited state, in agreement with [16]. This
will be studied in more detail when we include more bilocal operators.

5. Conclusion

We have presented a position-space sampling method for local multiquark operators within
distillation that avoids a strong cost scaling in the physical volume. This is a new unbiased stochastic
estimator for correlation functions which uses randomly displaced sparse grids instead of the full
spatial lattice to perform the contractions. We have shown that this method works well for meson
and local tetraquark operators: we can use a large point separation in the sparse grids while still
achieving a statistical error that is dominated by the Monte Carlo error.

In a preliminary study, we have used this method to investigate the influence of local operators
on the ground level of the𝑇𝑐𝑐 (3875)+. Adding two local operators to a basis of two bilocal scattering
operators resulted in a downward shift in the finite-volume energy of the ground state. However, this
shift is small compared to the error of the ground state energy and including more bilocal operators
could result in a similar shift. Therefore, we plan to investigate the influence of local operators
more thoroughly using further bilocal operators.
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