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We present results of a lattice study of the 𝑆-wave and 𝑃-wave 𝐷𝐷∗ scattering phase shifts
using Lüscher’s method under the twisted boundary conditions to investigate the doubly charmed
tetraquark 𝑇+

𝑐𝑐 observed by the LHCb collaboration. Although the scattering phase shift at zero
momentum gives information about the number of bound states according to Levinson’s theorem,
Lüscher’s method under the periodic boundary condition only accesses the scattering phase shifts
at some discrete momenta and is not suitable for watching the signal of bound state formation. On
the other hand, the twisted boundary condition has the advantage that the scattering phase shift
at any momentum can be calculated and that not only the 𝑆-wave scattering phase shift but also
the 𝑃-wave scattering phase shift can be obtained simultaneously. In this study, we perform the
simulation for the 𝐷𝐷∗ and 𝐵𝐵∗ systems in the 𝐼 = 0 channel using 2+1 flavor PACS-CS gauge
ensembles simulated at 𝑚𝜋 = 295 and 411 MeV.
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1. Introduction

The LHCb collaboration observed a new resonance interpreted to be the doubly charmed
tetraquark state 𝑇+

𝑐𝑐 in 2021 [1, 2]. It is considered to have isospin 𝐼 = 0 and quark content 𝑐𝑐𝑢̄𝑑 by
the experiment. In addition to the discovery, some model calculations indicate that doubly-heavy
tetraquark system such as 𝑄𝑄𝑢̄𝑑 has a bound state if the mass of quark 𝑄 is sufficiently heavy,
comparable to that of the bottom quark [3, 4].

In order to theoretically confirm the signal of the doubly charmed tetraquark, we calculate the
scattering phase shift between 𝐷 and 𝐷∗ mesons with lattice QCD using Lüscher’s method under
twisted boundary conditions [5, 6]. There are several calculation of the scattering phase shift using
Lüscher’s method [7–9] and using the HAL QCD method [10]. Although these authors aim to
find the 𝑆-matrix pole located below the 𝐷𝐷∗ threshold from the 𝐷𝐷∗ scattering phase shift, the
situation is complicated by the fact that the left-hand cut of 𝐷𝐷𝜋 just below the 𝐷𝐷∗ threshold
could give rise to the singularity to the 𝐷𝐷∗ scattering amplitude [11]. We therefore do not aim to
determine the pole condition, rather focus on the detailed information on the scattering phase shift
just above the 𝐷𝐷∗ threshold in this study.

In general, Levinson’s theorem tells us that the number of bound states 𝑛 and the 𝑙-wave
scattering phase shift at zero momentum 𝛿𝑙 (0) are related as 𝛿𝑙 (0) = 𝑛𝜋. Therefore, we can predict
the number of bound states in the system by tracing the behavior of scattering phase shift around
zero momentum [12]. However, Lüscher’s method under the periodic boundary condition only
gives the scattering phase shift at a few discrete momenta because the momentum of the center of
mass 𝑃𝑃𝑃 is discretized as ( 𝐿𝑃𝑃𝑃2𝜋 ) = 0, 1, 2, · · · due to the finiteness of the volume.

In this context, twisted boundary conditions plays an important role. We impose the following
boundary condition to the wave function Ψ(𝑥𝑥𝑥) as

Ψ(𝑥𝑥𝑥 + 𝐿𝑒𝑒𝑒𝑘) = 𝑒𝑖 𝜃𝑘Ψ(𝑥𝑥𝑥), (1)

where 𝑒𝑒𝑒𝑘 are unit vectors in the direction of the 𝑘 axis (𝑘 = 𝑥, 𝑦, 𝑧) and 𝜃𝑘 are real valued twisted
angles. Under the twisted boundary condition, the momentum of a plane wave 𝑝𝑝𝑝 are discretized as

𝑝𝑝𝑝 =
2𝜋𝑛𝑛𝑛
𝐿

+ 𝜽 , 𝑛𝑛𝑛 ∈ Z3 (2)

with a twist angle vector 𝜃𝜃𝜃 = (𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧) for the free case. By adjusting the arbitrary parameter
𝜃𝑘 , we can change the ground state energy of two-hadron scattering system, but this requires
modifications to the original Lüscher’s method as explained in Sec. 2. We can make use of this
formula to calculate both 𝑆-wave and 𝑃-wave scattering phase shifts at low energies in detail.

We therefore perform the calculation of scattering phase shift for the both 𝐷𝐷∗ and 𝐵𝐵∗

systems using Lüscher’s method under twisted boundary conditions to explore the behavior of the
low-energy scattering near the 𝐷𝐷∗ and 𝐵𝐵∗ threshold.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
9
0

Extraction of the 𝑆-wave and 𝑃-wave 𝐷𝐷∗ scattering phase shifts ..... Masato Nagatsuka

Twist angle (0, 0, 𝜃) (𝜃, 𝜃, 0) (𝜃, 𝜃, 𝜃)
Symmetry 𝐶4𝑣 𝐶2𝑣 𝐶3𝑣

label [001] [110] [111]
M𝜽

SS(𝑞) 𝑤00 𝑤00 𝑤00

M𝜽
SP(𝑞) 𝑖

√
3𝑤10 𝑖

√
6𝑤11 𝑖3𝑤10

M𝜽
PP(𝑞) 𝑤00 + 2𝑤20 𝑤00 − 𝑤20 − 𝑖

√
6𝑤22 𝑤00 − 𝑖2

√
6𝑤22

Table 1: Definitions of M𝜽
SS (𝑞), M

𝜽
SP (𝑞) and M𝜽

PP (𝑞) for each twist angle (0 < |𝜃 | < 𝜋).

2. Formulation

2.1 Lüscher’s finite size formula and the calculation strategy

For the case of 𝑆-wave (𝑙 = 0) scattering phase shift 𝛿0(𝑘), it is possible to be calculated from
energy spectra using Lüscher’s formula under the periodic boundary condition

cot 𝛿0(𝑘) =
1

𝜋3/2𝑞
𝑍00(1; 𝑞2), 𝑞 =

𝐿𝑘

2𝜋
, (3)

where the higher partial-wave (𝑙 ≥ 4) contributions are ignored. Since Lüscher proposed the
equation, we have seen many different kinds of extensions. Eventually, if the twisted boundary
conditions are employed and the higher partial-wave (𝑙 ≥ 2) contributions are ignored, the formula
can be summarized as �����cot 𝛿0(𝑘) −M𝜽

SS(𝑞) M𝜽
SP(𝑞)

M𝜽
SP(𝑞)

∗ cot 𝛿1(𝑘) −M𝜽
PP(𝑞)

����� = 0, (4)

where M𝜽
SS(𝑞), M

𝜽
SP(𝑞) and M𝜽

PP(𝑞) depend on the direction of 𝜽 , as shown in Table 1 [6]. 𝑤𝑙𝑚

that appears in the table are defined as

𝑤𝑙𝑚 =
1

𝜋3/2
√

2𝑙 + 1𝑞𝑙+1
𝑍 𝜃𝜃𝜃
𝑙𝑚(1; 𝑞2)∗. (5)

The generalized zeta function is also defined as

𝑍 𝜃𝜃𝜃
𝑙𝑚(1; 𝑞2) =

∑︁
𝑟𝑟𝑟∈Γ𝜽

Y𝑙𝑚(𝑟𝑟𝑟)
(𝑟𝑟𝑟2 − 𝑞2)

, (6)

where Γ𝜽 = {𝑟𝑟𝑟 |𝑟𝑟𝑟 = 𝑛𝑛𝑛 + 𝜽
2𝜋 , 𝑛𝑛𝑛 ∈ Z3} and Y𝑙𝑚(𝑟𝑟𝑟) = |𝑟𝑟𝑟 |𝑙𝑌𝑙𝑚(𝑟𝑟𝑟).

This formula claims that the angular momentum states can be highly mixed each other and
it is not reasonable to truncate the effect of 𝑃-wave (𝑙 = 1) scattering for 0 < |𝜃𝑘 | < 𝜋. In our
research, we make use of the property to extract not only the 𝑆-wave scattering phase shift, but also
the 𝑃-wave scattering phase shift according to the following strategy divided into three steps [6].

1. Calculate the 𝑆-wave scattering phase shifts using Eq. (3) for special angles 𝜽 = (0, 0, 0),
(0, 0, 𝜋), (𝜋, 𝜋, 0) and (𝜋, 𝜋, 𝜋). Then, we interpolate the data using the effective range
expansion

𝑘 cot 𝛿0(𝑘) =
1
𝑎0

+ 1
2
𝑟0𝑘

2 + 𝑣0𝑘
4. (7)
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This treatment is valid near the threshold, where the higher partial-wave (𝑙 ≥ 2) contributions
are safely ignored. Indeed, there are no mixing between 𝑆-wave and 𝑃-wave states for these
special angles since the corresponding point group maintains a center of inversion symmetry.

2. Calculate the 𝑃-wave scattering phase shift according to Eq. (4) for 𝜽 = (𝜃, 𝜃, 𝜃) expressed as

cot 𝛿1(𝑘) = 𝑤00(𝑞) + 2
√

6Im{𝑤22(𝑞)} +
9𝑤2

10(𝑞)
cot 𝛿0(𝑘) − 𝑤00(𝑞)

. (8)

We use the interpolated data sets of cot 𝛿0 given by Eq. (7) as inputs in the right hand side
of Eq. (8). We also interpolate the obtained 𝑃-wave scattering phase shift according to the
effective range expansion up to O(𝑘2).

3. Finally calculate the 𝑆-wave scattering phase shift near the threshold using Eq. (4) for 𝜽 =

(0, 0, 𝜃) expressed as

cot 𝛿0(𝑘) = 𝑤00(𝑞) +
3𝑤2

10(𝑞)
cot 𝛿1(𝑘) − 𝑤00 − 2𝑤22(𝑞)

(9)

with help of the interpolated data sets of cot 𝛿1 obtained from the second step.

There are two advantages in this strategy. First, 𝑆-wave scattering phase shifts near the threshold
can be obtained with high resolution. Second, it is also possible to simultaneously obtain the 𝑃-wave
scattering phase shift only by calculating the irreducible representation (irrep) 𝐴1 of two-hadron
states.

2.2 Calculation under the twisted boundary condition

In our simulation we use the twisted boundary condition for the charm and bottom quarks while
the periodic boundary condition is used for light quarks. We calculate the charm and bottom quark
propagators under the twisted boundary conditions as follows.

Suppose quark fields 𝑞𝜽 (𝑥𝑥𝑥, 𝑡) satisfy the twisted boundary condition

𝑞𝜽 (𝑥𝑥𝑥 + 𝐿𝑒𝑒𝑒 𝑗 , 𝑡) = 𝑒𝑖 𝜃 𝑗𝑞𝜽 (𝑥𝑥𝑥, 𝑡). (10)

We can introduce new fields
𝑞′(𝑥𝑥𝑥, 𝑡) = 𝑒−𝑖𝜽 ·𝑥𝑥𝑥/𝐿𝑞𝜽 (𝑥𝑥𝑥, 𝑡), (11)

which obey to the periodic boundary condition. Therefore, for the Wilson-type fermions, we can
calculate quark propagators subject to the twisted boundary condition with a simple modification
𝑈𝑥,𝜇 → 𝑒𝑖 𝜃𝜇𝑎/𝐿𝑈𝑥,𝜇 to gauge configurations 𝑈𝑥,𝜇 where 𝜃𝜇 = (𝜽 , 0) and the lattice spacing 𝑎.

In our calculations, we use wall-source operators so that the two-hadron interpolating operators
are automatically projected to the trivial irreducible representations of the point group. The wall
source operator for 𝑞′(𝑥𝑥𝑥, 𝑡) can be rewritten in terms of 𝑞𝜽 (𝑥𝑥𝑥, 𝑡) as

𝑞(𝑝𝑝𝑝, 𝑡) =
∑︁
𝑥𝑥𝑥

𝑞′(𝑥𝑥𝑥, 𝑡) =
∑︁
𝑥𝑥𝑥

𝑞𝜽 (𝑥𝑥𝑥, 𝑡)𝑒𝑖𝜽 ·𝑥𝑥𝑥/𝐿 , (12)
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where 𝑝𝑝𝑝 = 𝜽/𝐿. Thus, the wall-source quark operator with twisted angle 𝜽 can be considered as
the momentum 𝑝𝑝𝑝 projected operator. We then use wall-source operators to construct the hadron (ℎ)
interpolating operator at the source as

𝑂
𝑊,𝑘

ℎ
(𝑝𝑝𝑝, 𝑡src) =

∑︁
𝑥𝑥𝑥

𝑞 𝑓 (𝑥𝑥𝑥, 𝑡src)Γ𝑘

∑︁
𝑦𝑦𝑦

𝑞 𝑓 ′ (𝑦𝑦𝑦, 𝑡src) (13)

with 𝑝𝑝𝑝 = (𝜽 𝑓 − 𝜽 𝑓 ′)/𝐿, while we use local operators to construct the hadron (ℎ) interpolating
operator at the sink

𝑂
𝐿,𝑘

ℎ
(𝑥𝑥𝑥, 𝑡snk) = 𝑞 𝑓 (𝑥𝑥𝑥, 𝑡snk)Γ𝑘𝑞 𝑓 ′ (𝑥𝑥𝑥, 𝑡snk), (14)

where 𝑓 and 𝑓 ′ denote flavor indices and Γ𝑘 is a gamma matrix. Γ𝑘 = 𝛾𝑘 (𝑘 = 1, 2, 3) is chosen for
spin-1 mesons, and Γ𝑘 = 𝛾5 (𝑘 = 5) is chosen for spin-0 mesons. The index 𝑘 is omitted hereafter.
In case of ℎ = 𝐷 and 𝐷∗ (𝐵 and 𝐵∗) mesons, the twist angles of up and down quarks are fixed to be
𝜽 𝑓 = 000, while the twist angle of charm (bottom) quarks is varied so that the momentum 𝑝𝑝𝑝 is finite.

In this study, we only consider the center-of-mass of the two-hadron system. For the two-hadron
(𝐷𝐷∗) interpolating operator at the source, we use wall operators given as

𝑄𝑊
𝐷𝐷∗ (𝑃𝑃𝑃 = 000, 𝑝𝑝𝑝, 𝑡src) = 𝑂𝑊

𝐷 (𝑝𝑝𝑝, 𝑡src)𝑂𝑊
𝐷∗ (−𝑝𝑝𝑝, 𝑡src), (15)

where the 𝐷 and 𝐷∗ operators carry the opposite momentum so as to make zero total momentum
of the 𝐷𝐷∗ system (𝑃𝑃𝑃 = 000). Non-zero 𝑝𝑝𝑝 is responsible for non-zero relative momentum between
the 𝐷 and 𝐷∗ mesons. For the sink operator, we use a simple product of two local operators and
take summation over the spatial sites independently for each operator as

𝑄𝐿
𝐷𝐷∗ (𝑃𝑃𝑃 = 000, 𝑡snk) =

∑︁
𝑥𝑥𝑥

𝑂𝐿
𝐷 (𝑥𝑥𝑥, 𝑡snk)

∑︁
𝑦𝑦𝑦

𝑂𝐿
𝐷∗ (𝑦𝑦𝑦, 𝑡snk), (16)

where the total momentum of the 𝐷𝐷∗ system is projected onto zero momentum, when the twist
angles of the charm quarks involved in 𝐷 and 𝐷∗ mesons are taken in opposite directions with the
same angle size.

The usage of the wall-source operators indicates that the resulting two-hadron correlators are
already projected to the trivial irrep 𝐴1 of any point group as discussed in Ref. [6]. In addition, for
the case of the 𝐷𝐷∗ or 𝐵𝐵∗ scattering, since there is only a single spin state, no spin projection is
required. For the isospin 𝐼 of the 𝐷𝐷∗ or 𝐵𝐵∗ systems, we focus only on the 𝐼 = 0 channel in this
talk.

3. Numerical Results

3.1 Simulation Details

We apply Lüscher’s method to explore the 𝐷𝐷∗ and 𝐵𝐵∗ scatterings at low energies. For
this purpose we perform lattice QCD simulations on a lattice 𝐿3 × 𝑇 = 323 × 64 with 2+1 flavor
PACS-CS gauge configurations, where the simulated pion masses are 𝑚𝜋 = 295 and 411 MeV.
Simulation parameters of PACS-CS gauge configurations are summarized in Table 2.

We use nonperturbatively improved clover fermions for up and down quarks while relativistic
heavy quark (RHQ) action is used for charm and bottom quarks. Parameters of clover fermions
and the RHQ action used in this work are listed in Table 3. The RHQ parameters defined in a
Tsukuba-type action [13, 14] have been properly determined in Ref. [15].

5
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𝛽 𝑎 (fm) 𝐿3 × 𝑇 ∼ 𝐿𝑎 (fm) 𝑐SW

1.9 0.0907(13) 323 × 64 2.9 1.715

Table 2: Simulation parameters of 2 + 1 flavor PACS-CS gauge configurations, generated using the Iwasaki
gauge action and Wilson clover fermions [16].

3.2 Analysis of scattering phase shifts

Making use of the operators defined in Sec. 2, we calculate masses of 𝐷, 𝐷∗, 𝐵 and 𝐵∗ mesons
and energies of the 𝐷𝐷∗ and 𝐵𝐵∗ systems. The masses of each mesons are tabulated in Table. 5.
We are also able to calculate the scattering momentum 𝑘 from the total energy of two-meson system
by using the relation

𝑊 =

√︃
𝑘2 + 𝑀2

ℎ
+
√︃
𝑘2 + 𝑀2

ℎ∗ (ℎ = 𝐷, 𝐵). (17)

After we obtain 𝑘2 for each twisted angle, we can use Lüscher’s method to calculate the 𝑆-wave
scattering phase shift 𝛿0(𝑘) and 𝑃-wave scattering phase shift 𝛿1(𝑘) according to the three steps
described in Sec. 2.

First, we calculate 𝑆-wave scattering phase shift 𝛿0(𝑘) for specific four angles 𝜽 = (0, 0, 0),
(0, 0, 𝜋), (𝜋, 𝜋, 0) and (𝜋, 𝜋, 𝜋) where we can use Eq. (3). As a typical example, we show the
𝑘 cot 𝛿0 as a function of 𝑞2 for the case of the 𝐼 = 0 𝐷𝐷∗ scattering with 𝑚𝜋 = 411 MeV in the
left panel of Fig 1. We observe that 𝑘 cot 𝛿0 is monotonically increasing within this range and we
interpolate the four data points expressed as circles. Next, we calculate 𝑃-wave scattering phase
shift 𝛿1(𝑘) from data sets of 𝜃𝜃𝜃 = (𝜃, 𝜃, 𝜃) using Lüscsher’s formula (8) with a help of information
obtained beforehand on 𝑆-wave. We observe the behavior of 𝑘3 cot 𝛿1 as a function of 𝑞2 in the
right panel of Fig. 1. We fit these data as the linear function of 𝑞2. We then can calculate the 𝑆-wave
scattering phase shifts near the threshold from data sets of 𝜃𝜃𝜃 = (0, 0, 𝜃) using Lüscsher’s formula (9)
with a help of the 𝑃-wave information obtained from the data sets of 𝜃𝜃𝜃 = (𝜃, 𝜃, 𝜃). As shown in the
left panel of Fig 1, the results of 𝑆-wave 𝑘 cot 𝛿0(𝑘) obtained near the threshold (diamond symbols)
fill a gap between two data points obtained from 𝜽 = (0, 0, 0) and (0, 0, 𝜋).

The above procedure was carried out for four different combinations of two light quarks
(𝑚𝜋 = 295 and 411 MeV) and two heavy-flavor quarks (charm and bottom). The results for 𝛿0 and
𝛿1 are shown as a function of the two-meson energy 𝐸 measured from the respective thresholds in
Fig. 2 and Fig 3.

Both 𝑆-wave (Fig. 2) and 𝑃-wave (Fig 3) scattering phase shifts are positive, reflecting the
attractive interaction between the 𝐷 and 𝐷∗ (𝐵 and 𝐵∗) states in the 𝐼 = 0 channel. Although
neither 𝑇𝑐𝑐 nor 𝑇𝑏𝑏 states could be observed as deeply bound states of 𝐷𝐷∗ or 𝐵𝐵∗ in our study, the
weak attraction seen in both channels becomes stronger as 𝑚𝜋 decreases from 411 MeV to 295 MeV.
Especially, for the 𝐵𝐵∗ case, the unitary limit (lim𝑘→0 𝑘 cot 𝛿0(𝑘) ≈ 0) is reached at 𝑚𝜋 = 295
MeV, and the peculiar behavior of the scattering phase shift at 𝐸 = 0 MeV suggests the formation
of a shallow bound state 1. We can therefore expect a deeply bound state at lighter pion masses.

1The isospin projection was incorrect in our previous analysis where there was no sign of bound state formation.
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Figure 1: Left: 𝑘 cot 𝛿0 as a function of 𝑞2 for the case of the 𝐼 = 0 𝐷𝐷∗ scattering at 𝑚𝜋 = 411 MeV.
Right: 𝑘3 cot 𝛿1 as a function of 𝑞2 for the case of the 𝐼 = 0 𝐷𝐷∗ scattering at 𝑚𝜋 = 411 MeV.
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Figure 2: 𝑆-wave scattering phase shifts for the 𝐷𝐷∗ and 𝐵𝐵∗ scatterings in the 𝐼 = 0 channel: 𝑚𝜋 =

295 MeV (left) and 𝑚𝜋 = 411 MeV (right).
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Figure 3: 𝑃-wave scattering phase shifts for the 𝐷𝐷∗ and 𝐵𝐵∗ scatterings in the 𝐼 = 0 channel: 𝑚𝜋 =

295 MeV (left) and 𝑚𝜋 = 411 MeV (right).
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Flavor 𝜅ℎ 𝜈 𝑟𝑠 𝑐𝐵 𝑐𝐸

Charm 0.10819 1.2153 1.2131 2.0268 1.7911
Bottom 0.03989 2.9570 2.5807 4.0559 2.8357

Table 3: Parameters of the RHQ action for charm and bottom quarks used in this work. The parameter set
of the charm quark was determined in Ref. [15].

Ensemble (𝜅𝑢𝑑 , 𝜅𝑠) 𝑀𝜋 [MeV] # of configs.
A (0.13770, 0.13640) 295(2) 799
B (0.13754, 0.13640) 411(1) 450

Table 4: Simulation parameters of PACS-CS configurations [16].

Ensemble 𝑀𝐷 [GeV] 𝑀𝐷∗ [GeV] 𝑀𝐵 [GeV] 𝑀𝐵∗ [GeV]
A 1.877(2) 2.030(4) 5.258(3) 5.310(4)
B 1.901(2) 2.056(4) 5.291(5) 5.344(7)

Table 5: Mass spectrum of 𝐷, 𝐷∗, 𝐵 and 𝐵∗ mesons.

4. Summary

In this talk, we presented our results on the calculation of the 𝑆-wave and 𝑃-wave scattering
phase shifts of the 𝐷𝐷∗ and 𝐵𝐵∗ systems in the 𝐼 = 0 channel using 2+1 flavor PACS-CS gauge
ensembles simulated at 𝑚𝜋 = 295 and 411 MeV. The twisted boundary condition allows us to treat
any small momentum on the lattice through the variation of the twist angle, continuously. Therefore,
we can determine the low-energy scattering phase shifts near the threshold, where a rapid increase
in scattering phase occurs as a precursor to bound state formation. In our simulated pion mass
region, we only observed an attractive interaction between 𝐷 and 𝐷∗ states in the 𝐼 = 0 channel,
which was not strong enough to form bound states. However, for the case of 𝐵𝐵∗, we observe that
the unitary limit is reached at 𝑚𝜋 = 295 MeV, and the peculiar behavior of the scattering phase
shift appears at 𝐸 = 0 MeV. This suggests the formation of a shallow bound state. We can therefore
expect a deeply bound state at lighter pion masses at least for the 𝐵𝐵∗ system.
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