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We study the scattering of two identical pNGBs (pseudo-Nambu-Goldstone Bosons) in 𝑆𝑝(4)
gauge theory with two mass-degenerate Dirac fermions in the pseudo-real fundamental represen-
tation. This theory serves as a realization of a SIMP (Strongly Interacting Massive Particles) Dark
Matter model. SIMPs are an exciting dark matter candidate as they make use of a new relic density
mechanism and provide potential solutions to the so-called small-scale structure problems. These
theories are realized by a confining dark sector which includes non-perturbative signatures. While
most of the research focuses on ChPT (Chiral Perturbation Theory), first-principle verification of
these models is indispensable. In these proceedings we give an update on scattering properties in
the most common channel and give an outlook on the projects that lie ahead.
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1. Introduction

Beyond the standard model sectors described by symplectic gauge groups with fundamental
fermions have interesting phenomenological properties for composite Higgs or dark matter models
[1, 2]. In contrast to SU(N), Sp(2N) has a pseudo-real fundamental fermion representation. Left-
and right-handed spinor components are related by the global flavour symmetry which is enlarged
compared to SU(N) theories [3].

We use this setup to describe a dark sector in which the dark matter candidates inherit a
self-interaction. This possibility gained attention recently as it provides a possible solution to the
so-called small-scale structure problems. Moreover, this model is a minimal realization of the
so-called SIMP paradigm in which the dark matter relic abundance is realized making use of a
number-lowering process within the dark sector [4, 5]. Calculations of i.e. the relic density in
SIMP theories have been done using ChPT. The lattice can provide first-principle input to these
calculations in the form of LECs (Low-Energy Constants). This is necessary as the underlying UV
(Ultra Violet) theory is inherently non-perturbative. Charging two fundamental fermions under the
fundamental representation of Sp(4), results in a U(4)𝐹 flavour symmetry. The breaking of the
axial anomaly leaves an SU(4)𝐹 flavour symmetry. Chiral symmetry breaking and explicit fermion
masses break this symmetry further down to Sp(4)𝐹 .

This breaking gives rise to five pNGBs1 which will be the lightest particle in the theory and
our dark matter candidate. In similarity to QCD, we will refer to them as dark pions.

These five pions can interact via a Wess-Zumino-Witten 5-point-vertex [6, 7] in ChPT and
therefore accommodate the number lowering process relevant for the SIMP paradigm.

In a first step, the mass spectrum in the theory was investigated [8], but for the investigation
of the theory as a dark matter candidate, scattering information is essential. In Ref. [9], of which
we will show result in these proceedings, we investigated the scattering phase shift in the maximal
scattering channel. As a first step, this work already gave the confirmation that the theory passes
experimental bounds on i.e. the pion mass. In ongoing efforts, we perform lattice calculations
closer to the chiral limit, which has the advantage that lattice observables can be translated to
LECs more reliably. Further, this increases the ratio of the vector particle mass to the pion
mass, eventually making former resonant in the 10-dimensional scattering channel, which will have
important phenomenological consequences [10]. A milestone in Sp(4) dark matter is to calculate the
amplitude of the 5-point vertex which also lives in the 10-dimensional channel, checking whether an
effective description is viable and calculating the resulting relic density which will be the ultimate
test for the model as a dark matter candidate.

For further details, we refer to our paper [9].

2. Lattice setup

We are interested in first-principle spectroscopy and scattering information. To this end, we
use lattice field theory and the Lüscher quantization condition [11, 12]. In this chapter, we state the
techniques employed and present some details and improvements that are not found in [9].

1The number of broken generators or the dimension of the coset SU(4)/Sp(4)
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For our calculations we use the HiRep code [13, 14] which has been extended to simulations
of symplectic gauge groups [15]. We generate ensembles using the unimproved Wilson action with
dynamical fermions. We explore a parameter space in the inverse gauge coupling 𝛽 = 6.9, 7.05 and
7.2 and corresponding bare fermion masses which result in values of 𝑚𝜋

𝑚𝜌
between 0.70 and 0.88.

We calculate correlation functions of a single pion and a two-pion scattering operator in the
most common channel that are given by

O𝜋 (𝑥) = �̄�(𝑥)𝛾5𝑑 (𝑥)
O𝜋𝜋 (𝑥, 𝑦) = O𝜋 (𝑥)O𝜋 (𝑦) = �̄�(𝑥)𝛾5𝑑 (𝑥)�̄�(𝑦)𝛾5𝑑 (𝑥).

(1)

Performing the Wick contractions, the two-pion correlation function receives contributions
from two diagrams 𝐶𝜋𝜋 = 2𝐷 − 2𝐶, where "D" and "C" stand for disconnected and connected
respectively.

We use 𝑍2 × 𝑍2 stochastic noise sources with spin-dilution [16] for the inversion of the Dirac
operator. In order to remove constant contributions to the correlation function from around-the-
world effects, we perform a numerical derivative [17] before fitting the data using the corrfitter
package [18]. It uses a Bayesian approach to fit a tower of energy levels. In the final analysis, we
only use the first energy level.

ChPT expands order by order in 𝑚𝜋

𝑓𝜋
. In order to compare our results with ChPT, we calculate

the unrenormalized pion decay constant 𝑓 0
𝜋 via

lim
𝑡→∞

𝐶O𝛾0𝛾5
(𝑡) =

|⟨0|O𝛾0𝛾5 |PS⟩|2

2𝑚𝜋

(
𝑒−𝑚𝜋 𝑡 + 𝑒−𝑚𝜋 (𝑇−𝑡 )

)
=

(
𝑓 0
𝜋

)2
𝑚𝜋

2

(
𝑒−𝑚𝜋 𝑡 + 𝑒−𝑚𝜋 (𝑇−𝑡 )

)
. (2)

Before determining the renormalized decay constant via 𝑓𝜋 = 𝑍𝐴 𝑓
0
𝜋 where the renormalization

constant 𝑍𝐴 is estimated using leading order lattice perturbation theory [19].

2.1 Lüscher analysis

When two particles that posses an interaction among them are put in a finite volume, the energy
levels they can take are shifted from the non-interacting ones. This shift can be correlated with the
scattering behaviour in infinite volume by the so-called Lüscher quantization condition [11, 12]. In
the most general form, the Lüscher quantization condition can be written as

tan [𝛿(𝐸com)] = 𝑓 (𝐸, ®𝑃, 𝐿) |𝐸=𝐸 (𝐿) (3)

where 𝛿 is the scattering phase shift containing all relevant scattering information as a function of
the center-of-mass energy and f is a function that depends on 𝐸 , the energy measured on the lattice,
𝐿 the spacial extent 𝑃, the total momentum. The vertical bar indicates that this formula is only
valid if 𝐸 is an energy level in the finite volume. The extension to scattering of up to three particles
[20] in general frames [21] has been worked out and will become relevant for the next steps of the
investigation of Sp(4) gauge theory as a description of a dark sector.
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3. Scattering length

The threshold value of the phase shift is given by the scattering length. We can extract the
value of the scattering phase shift by fitting it to ERE (Effective Range Expansion) [22]. Moreover,
the result can be used to fix LECs that arise in an effective description of the theory with ChPT2.

The leading order prediction for the scattering length from chiral perturbation theory for
theories with two fermions charged in a pseudo-real representation of the gauge group reads [23]

𝑎𝐵0 = − 1
32𝜋

(
𝑚𝜋

𝑓𝜋

)2

𝑀 𝑡ℎ
0 = 32𝜋𝑎𝐵0 = −

(
𝑚𝜋

𝑓𝜋

)2

𝜎th
0 = lim

𝑝→0

∫
𝑑Ω

𝑑𝜎

𝑑Ω
=

1
64𝜋

|𝑀 𝑡ℎ
0 |2

𝑚2
𝜋

=
1

64𝜋

(
𝑚𝜋

𝑓 2
𝜋

)2
.

(4)

This was also used in [24] with a different convention of the scattering length. The superscript 𝐵

indicates the definition of the scattering length used in [23], which differs from our definition. The
third line is the threshold value for the s-wave cross-section which can be compared to the lattice
data by using the ERE. In the ERE, we expand the phase shift as follows [22]

𝑝 cot(𝛿0) = − 1
𝑎0

+ 𝑝2𝑟0
2

+ O(𝑝4)

𝜎0 =
4𝜋𝑎2

0��1 − 𝑎0𝑟0
2 + 𝑖𝑝𝑎0

��2 𝑝→0
== 4𝜋𝑎2

0

𝑎0𝑚𝜋 =
1

16𝜋

(
𝑚𝜋

𝑓𝜋

)2
.

(5)

The last line shows the ChPT prediction for the scattering length that we extract from the Lüscher
analysis.

4. Results

In these proceedings, we focus on the results of the scattering length. Fig. 2 shows a corrected
version of Fig. 3 from [9] with the correct ChPT prediction on the scattering length from [23]. An
in-depth discussion of the results can be found in [9].

The data points in Fig. 1 are the result of using the Lüscher formula for the energy levels.
The curved error bars indicate that the two axes are not independent of each other, and only values
on the lines are allowed. In contrast to [9], here we only consider ensembles with 𝑁𝐿 > 8,
𝑚𝜋/𝑚∞

𝜋 > 1.3 and 𝑎𝐸𝜋𝜋 < 0.95 in order to reduce finite volume and discretization artefacts. We
observe consistent negative values for the phase shift at low energies which correspond to a positive
scattering length in our convention and a repulsive interaction. The blue line and band show the
result of fitting the data points to an effective range expansion (5). For the estimation of the error

2There was a discrepancy between the chiral perturbation theory prediction and the line drawn in Fig. 3 in [9] of a
factor 𝜋/2. We thank Daniil Krichevskiy for bringing this to our attention.
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Figure 1: Top panel: Result of (3) plotted against the center-of-mass energy squared for one representative
ensembles (𝛽 = 7.2 and 𝑎𝑚0 = -0.78). The blue line and band show the result of fitting the data with effective
range expansion. The curved error bars indicate, that the two axes are not independent and only values on
the curved lines are allowed. Bottom panel: Result of using the data points above in (5) to obtain the s-wave
cross-section.

we perform a bootstrap resampling of the energy levels according to the error determined from the
corrfitter package [18]. We run the analysis with each sample and obtain an estimate on the error
from the resulting sample. The error band is drawn, by also sampling the value of the y-axes at
several values of 𝑠/𝑚∞2

𝜋 . The threshold value (𝑠 → 4𝑚2
𝜋) can be translated to the scattering length.

The bottom panel shows the s-wave cross-section obtained with (5).

Fig. 2 shows the result of the scattering length for different values of 𝑚𝜋/ 𝑓𝜋 . This plot is an
updated version of Fig. 2 from [9] where the ChPT prediction is now indicated by the dashed green
line correctly. The data points are mostly compatible with the ChPT prediction at the 1𝜎 level. This
is promising for the use of ChPT, as one cannot naively expect the prediction of the leading order
to work so well at values of 𝑚𝜋/ 𝑓𝜋 ≈ 4.5 − 6. These values for the scattering length can further
be used to describe the low-energy scattering behaviour of dark pions. In Ref. [9] this has been
done to calculate the velocity-weighted cross-section which has been estimated from dark matter
halos [25]. This showcases a direct comparison of lattice results with astrophysical data. While the
lattice data does not show a velocity dependence at non-relativistic velocities, the data could still
be used to constrain the mass of the dark matter candidate. We found that 𝑚𝐷𝑀 ≳ 100 MeV, which
fits the prediction for SIMP dark matter.
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Figure 2: The scattering length obtained from effective range expansion against the ratio of the mass and
decay constant of the pion (The expansion parameter in ChPT). Different colours and symbols correspond
to different values of the inverse coupling 𝛽. We observe a consistent positive scattering length across all
ensembles. The horizontal grey line and band indicate a central value and error for the scattering length
estimated using all of our ensembles. The green dashed line shows the expected result from leading order
ChPT [23] (Note the different sign convention).

5. Outlook

In this section I would like to summarize the problems that will arise in the future in the treatment
of SIMP dark matter on the lattice. Of great importance is the interplay between effective theories
and first-principle calculations. Most SIMP studies, e.g. on relic density, work with effective
theories as it is much easier to describe the important degrees of freedom. However, the model
is motivated by a UV-complete theory and therefore always requires first-principle verification.
Correlating our results with low-energy constants in ChPT is a necessary endeavour that can
already be started with the results presented here. However, to gain a thorough understanding of
SIMP dark matter and in order to be able to falsify it, one needs to address the number-lowering
process that motivates the SIMP paradigm in the first place. In our work, this process is realized
by a 3 → 2 of pNGB in the second-largest scattering channel (10-dimensional). A natural first step
in this channel is to measure the resonance parameters of the vector particle. This is an ongoing
effort that involves new challenges, including the greater computing power required. Fortunately,
all measurements of 𝜋𝜋 → 𝜌 scattering can be repurposed to study the 3 → 2 process, but it
remains to be seen whether it is feasible to extract enough scattering information to constrain the
ChPT prediction to the 3 → 2 process.
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