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The extraction of physical observables from lattice energy spectra using finite volume quantization
conditions is one of the key methods in the study of hadron physics. Due to the expensive and
limited lattice configurations, there is significant interest in extracting as much information as
possible from these datasets. One effective approach involves varying the total momentum within
the finite volume, which allows for the identification of additional finite volume energy levels in
moving systems. However, the finite volume quantization conditions applicable to moving systems
require careful consideration of momentum transformations between different reference frames,
and there exists several different method to perform the three-momentum transformation. This
work systematically presents a general scheme for three-momentum transformations in a finite
volume, and this scheme is able to generate two existed transformations in literature. In addition,
we propose a new transformation method that circumvents reliance on the total energy during the
transformation process, which is crucial for employing the Hamiltonian Effective Field Theory
(HEFT) approach to extract scattering amplitudes. At last, we also demonstrate the consistence
between our method with others through numerical comparisons, employing a phenomenological
𝜋𝜋 scattering example.
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1. Introduction

The quantization conditions applicable to two-particle systems were established by Lüscher in
the 1990s [1, 2] and have since undergone significant development; for a comprehensive review,
please refer to the literature [3]. These quantization conditions successfully connect the finite
volume energy spectrum of two-hadron systems to their scattering matrices in infinite space. With
advancements in computational technology, extensive research has been conducted on systems such
as 𝜋𝜋 rescattering, [4–9]. The lattice calculations for the finite volume energy spectrum of two-body
systems are based on lattice configurations, which can be quite costly. Hence, it is imperative to
extract as much finite volume energy spectrum information as possible from a given configuration.

In the study of two-particle scattering involving decaying particles, moving systems not only
provide access to additional two-body energy levels, but they also make the investigation of decay
processes more feasible compared to stationary systems. For instance, in lattice studies of 𝜌 meson
scattering with 𝜋𝜋, literature [4] reports only three energy points in the rest frame. Translating
these into the relationship between scattering phase shifts and total energy yields insufficient data to
ascertain the resonance pattern of the 𝜌 meson. However, considering systems with different total
momenta produces a variety of finite volume energy levels. Utilizing the quantization conditions
allows for the reconstruction of a complete phase shift image, showing a significant transition from
0 degrees to 180 degrees. Thus, the application of finite volume quantization conditions to moving
systems is crucial for the analysis of lattice data.

There are two distinct forms of quantization conditions for two-body moving systems, re-
spectively derived from Rummukainen and Gottlieb (RG) [10] and Kim, Sachrajda, and Sharpe
(KSS) [11]. They employ different methodologies to achieve three-momentum transformations
across different reference frames. However, both transformation schemes are heavily dependent on
the system’s total energy (i.e., the energy level of interest), necessitating the solution of equations
to obtain finite volume energy levels. An alternative approach based on Hamiltonian Effective
Field Theory (HEFT) [12–16] directly derives finite volume energy levels by solving eigenvalue
problems of the finite volume Hamiltonian. Nevertheless, in moving systems, this Hamiltonian
does not inherently include the sought energy levels, specifically the total energy. Therefore, the
existing three-momentum transformation schemes are not suitable for HEFT.

In this paper, we introduce a new transformation method [17] based on a systematic description
of finite volume three-momentum transformation schemes, which is independent of total energy and
relies solely on the momenta of the two-particle system. This makes it compatible with the HEFT
approach. Additionally, we find that this method is also beneficial for three-body systems, ensuring
that the velocities of any particles do not exceed the speed of light in any spectator reference [18].

2. Finite volume quantization condition for two-body system

In this section, we first introduce the quantization condition for two-body system based on the
Bethe-Salpeter equation (BSE). As shown in Fig. 1, we provide three diagrams to show how to
connect the T-matrices in the finite and infinite volume. Fig. 1(a) and (b) show the BSE in the infinite
and finite volumes, 𝑇 = 𝑉 + 𝑉𝐺2𝑇 and 𝑇𝐿 = 𝑉 + 𝑉𝐺𝐵

2 𝑇
𝐿 respectively. Here 𝐺2 and 𝐺𝐵

2 are the
corresponding operator of the propagators. Then we can derive 𝑇𝐿 = 𝑉 + 𝑉

(
𝐺2 + 𝐺𝐵

2 − 𝐺2
)
𝑇𝐿 =

2
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Figure 1: Diagram (A) indicates the usual Bethe-Salpeter equation in the continuum. Diagram (B) shows
corresponding form in the finite volume. Diagram (C) represents the relationship between 𝑇 and 𝑇𝐿 with
𝐺𝐿

2 = 𝐺𝐵
2 − 𝐺2.

𝑉 + 𝑉
(
𝐺2 + 𝐺𝐿

2
)
𝑇𝐿 to obtain 𝑇 − 𝑇𝐿 = −(1 − 𝑉𝐺2)−1𝑉𝐺𝐿

2 𝑇
𝐿 . By using 𝑇 = (1 − 𝑉𝐺2)−1𝑉 , we

have 𝑇𝐿 = 𝑇 + 𝑇𝐺𝐿
2 𝑇

𝐿 , which graphically is given by Fig.1(C). An similar proof can be found in
Ref. [1].

Base on the relationship between𝑇 and𝑇𝐿 , it is straightforward to obtain the following equation
at the rest frame,

𝑇𝐿 (𝑝∗𝑓 , 𝑝
∗
𝑖 ; 𝑃

∗) = 𝑇 (𝑝∗𝑓 , 𝑝
∗
𝑖 ; 𝑃

∗) +
∫

𝑑𝑘∗0
2𝜋

(
1
𝐿3

∑︁
k∗

−
∫

𝑑3𝑘∗

(2𝜋)3

)
× 𝑇 (𝑝∗𝑓 , 𝑘

∗; 𝑃∗)𝐺2(𝑘∗, 𝑃∗)𝑇𝐿 (𝑘∗, 𝑝∗𝑖 ; 𝑃∗) . (1)

Then if the total momentum of the system is non-vanishing in the box, the momentum in the
rest frame is not integer momentum, while the momentum modes of the field quanta can be more
naturally expressed in relation to the lattice rest frame; we denote these momenta with a superscript
𝑟, for example, k𝑟 . Thus,

∑
k∗ should change to

∑
k𝑟 . Then we also will introduce a transformation

between k∗ and k𝑟 , as well as a Jacobian factor in the sum and integral,∫
𝑑3𝑘∗

(2𝜋)3 →
∫

𝑑3𝑘𝑟

(2𝜋)3 J
𝑟 ,

1
𝐿3

∑︁
k∗

→ 1
𝐿3

∑︁
k𝑟

J 𝑟 . (2)

Now, Eq. (3) can be written as,

𝑇𝑟 ,𝐿 (𝑝∗𝑓 , 𝑝
∗
𝑖 ; 𝑃

∗) = 𝑇 (𝑝∗𝑓 , 𝑝
∗
𝑖 ; 𝑃

∗) +
∫

𝑑𝑘∗0
2𝜋

(
1
𝐿3

∑︁
k𝑟

−
∫

𝑑3𝑘𝑟

(2𝜋)3

)
× J 𝑟𝑇 (𝑝∗𝑓 , 𝑘

∗; 𝑃∗)𝐺2(𝑘∗, 𝑃∗)𝑇𝑟 ,𝐿 (𝑘∗, 𝑝∗𝑖 ; 𝑃∗) . (3)

3
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After integrating the 𝑘∗0, we will reduce such integral equation to the three dimensional form,

𝑇𝑟 ,𝐿 (p∗
𝑓 , p

∗
𝑖 ; 𝐸

∗) = 𝑇 (p∗
𝑓 , p

∗
𝑖 ; 𝐸

∗) + 𝑖
(

1
𝐿3

∑︁
k𝑟

−
∫

𝑑3𝑘𝑟

(2𝜋)3

)
× J 𝑟

𝑇 (p∗
𝑓
, k∗; 𝐸∗)

4𝜔1(k∗)𝜔2(k∗)
𝑇𝑟 , 𝐿 (k∗, p∗

𝑖
; 𝐸∗)

𝐸∗ − 𝜔1(k∗) − 𝜔2(k∗) + 𝑖𝜖 , (4)

where 𝜔𝑖 (𝑞) =
√︃
𝑚2

𝑖
+ 𝑞2. In fact, the energy levels in the finite volume are the poles of the 𝑇𝑟 ,𝐿 .

By applying the Poisson summation formula and the partial wave expansion, we will obtain the
quantization condition as follows, (𝐸∗(𝑞) = 𝜔1(𝑞) + 𝜔2(𝑞))

0 = det ( [cot 𝛿(𝑞)] + [𝑀 (𝑞; P)]) , (5)
[cot 𝛿(𝑞)]𝑙𝑚,𝑙′𝑚′ = cot 𝛿𝑙 (𝑞)𝛿𝑙,𝑙′𝛿𝑚,𝑚′ , (6)

[𝑀 (𝑞; P)]𝑙𝑚,𝑙′𝑚′ =
1
𝑞

(
1
𝐿3

∑︁
k

−P
∫

𝑑3𝑘𝑟

(2𝜋)3

)
32𝜋2𝐸∗(𝑞)J 𝑟

4𝜔1(k∗) 𝜔2(k∗)

𝑌𝑙𝑚(k̂∗)𝑌 ∗
𝑙′𝑚′ (k̂∗)

(
|k∗ |
𝑞

) 𝑙+𝑙′
𝐸∗(𝑞) − (𝜔1(k∗) + 𝜔2(k∗)) . (7)

The detailed derivation can be found in Ref. [17]. Please note k∗ in 𝑀 (𝑞; P) is the function of k𝑟 .

3. The three-momentum transformation

Now the key problem is to specify the exact three-momentum transformation k∗ → k𝑟 . There
should have some freedom because of lacking the energy components for these three-momenta. We
need to introduce two variables 𝑎∗ and 𝑏∗ for the energy parts of P∗ and k∗, respectively, which
have several different choices, for example,

𝑎∗ = 𝐸∗(𝑞) or 𝜔1(k∗) + 𝜔2(k∗) , 𝑏∗ = 𝜔1(𝑞) or 𝜔1(k∗) . (8)

Then, we can explicitly write down the relationship between k∗ and k𝑟 ,

k𝑟 = (𝑘𝑟∥ , k
𝑟
⊥) = (𝛾 𝛽 𝑏∗ + 𝛾 𝑘∗∥ , k

∗
⊥) ≡ A k∗

∥ + B P + k∗
⊥ , (9)

𝛽 =
|P|

√
𝑎∗ 2 + P2

, A = 𝛾 =

√
𝑎∗ 2 + P2

𝑎∗
, B =

𝑏∗

𝑎∗
. (10)

By the different choices of 𝑎∗ and 𝑏∗, we will have three different transformation at least. Two
of them are exact same as the forms developed in Refs. [11] and [10], named as KSS and RG,
respectively. The another new one is named as LWLY.

• 𝑟=LWLY,

𝑎∗ = 𝜔1(k∗) + 𝜔2(k∗) , 𝑏∗ = 𝜔1(k∗) , J 𝑟 =
𝜔1(k∗)𝜔2(k∗)
𝜔1(k∗) + 𝜔2(k∗)

𝜔1(k𝑟 ) + 𝜔2(P − k𝑟 )
𝜔1(k𝑟 )𝜔2(P − k𝑟 ) ,

k𝑟 =

√︃
(𝜔1(k∗) + 𝜔2(k∗))2 + P2

𝜔1(k∗) + 𝜔2(k∗) k∗
∥ +

𝜔1(k∗)
𝜔1(k∗) + 𝜔2(k∗)P + k∗

⊥ ,

k∗ =
𝜔1(k𝑟 ) + 𝜔2(P − k𝑟 )√︃

(𝜔1(k𝑟 ) + 𝜔2(P − k𝑟 ))2 − P2
k𝑟
∥ −

𝜔1(k𝑟 )√︃
(𝜔1(k𝑟 ) + 𝜔2(P − k𝑟 ))2 − P2

P + k𝑟
⊥ .

4
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• 𝑟=KSS,

𝑎∗ = 𝐸∗(𝑞) , 𝑏∗ = 𝜔1(k∗) , J 𝑟 =
𝜔1(k∗)
𝜔1(k𝑟 )

k𝑟 =
𝐸 (𝑞)
𝐸∗(𝑞)k∗

∥ +
𝜔1(k∗)
𝐸∗(𝑞) P + k∗

⊥ , k∗ =
𝐸 (𝑞)
𝐸∗(𝑞)k𝑟

∥ −
𝜔1(k𝑟 )
𝐸∗(𝑞) P + k𝑟

⊥ .

• 𝑟=RG,

𝑎∗ = 𝐸∗(𝑞) , 𝑏∗ =
𝐸∗(𝑞)

2
+
𝑚2

1 − 𝑚
2
2

2𝐸∗(𝑞) = 𝜔1(𝑞) , J 𝑟 =
𝐸∗(𝑞)
𝐸 (𝑞) ,

k𝑟 =
𝐸 (𝑞)
𝐸∗(𝑞)k∗

∥ +
1
2

(
1 +

𝑚2
1 − 𝑚

2
2

𝐸∗ 2(𝑞)

)
P + k∗

⊥ , k∗ =
𝐸∗(𝑞)
𝐸 (𝑞)

(
k𝑟
∥ −

1
2

(
1 +

𝑚2
1 − 𝑚

2
2

𝐸∗ 2(𝑞)

)
P

)
+ k𝑟

⊥ .

We will find that in 𝑟 =KSS, the first particle is always on-shell while in 𝑟 =RG, the arrangement
of energies follows the masses of the two particles which are both off-shell. Regardless, both
transformations are dependent on energy 𝐸∗. On the contrary, in 𝑟 =LWLY, the transformation
is independent of energy, which ensures that the potential energy in the moving frame is also
independent of energy. Consequently, the eigenvectors of the Hamiltonian constructed in the
discrete momentum space are complete and orthogonal.

4. The application of LWLY in 𝜋𝜋 s-wave scattering in the finite volume

In this section, we will give an example to show how to use 𝑟 =LWLY in the HEFT. We will
have a potential of s-wave 𝜋𝜋 scattering as a s-channel bare 𝜎 exchange. Then we only need to
know the coupling between 𝜎 and 𝜋𝜋, and the form of such coupling is as follows,

𝑔(𝑞) = 𝑔𝜋𝜋√
𝑚𝜋

1
1 + (𝑐 × 𝑘)2 , (11)

where 𝑔 = 0.647 and 𝑐 = 0.440 fm. In addition, we also need a bare mass of 𝜎 as 𝑚𝜎 = 948.96
MeV. In the HEFT, we will have a Hamiltonian matrxi in the finite volume with total momentum ®𝑃
as follows,

𝐻 =

©«

𝑚𝜎 𝑔𝐿 ( ®𝑘1, ®𝑃) 𝑔𝐿 ( ®𝑘2, ®𝑃) · · ·

𝑔𝐿 ( ®𝑘1, ®𝑃)
√︃
(𝜔𝜋 ( ®𝑘1) + 𝜔𝜋 ( ®𝑃 − ®𝑘1))2 − ®𝑃2 0 · · ·

𝑔𝐿 ( ®𝑘2, ®𝑃) 0
√︃
(𝜔𝜋 ( ®𝑘2) + 𝜔𝜋 ( ®𝑃 − ®𝑘2))2 − ®𝑃2 · · ·

...
...

...
. . .

ª®®®®®®¬
,

(12)

where, 𝑔𝐿 ( ®𝑘1, ®𝑃) =
(

2𝜋
𝐿

) 3
2 𝑔 ( | ®𝑘∗ | )√

4𝜋
JLWLY.

In Fig. 2, we show the finite energy levels vs lattice size based on the same potential model but
with different approach. The scheme KSS/RG use the phase shift generated by the potential model
as input to obtain energy levels by solving the eigenvalue equation of the quantization conditions as
shown in Eq. (5), while the scheme LWLY directly computes the eigenvalues of the finite volume
Hamiltonian matrix as shown in Eq. (12) by using the same potential model. It can be seen that
their results are very consistent at large lattice size.

5
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Figure 2: Spectra for systems with total momentums 2𝜋
𝐿
(0, 0, 1), 2𝜋

𝐿
(1, 1, 0) and 2𝜋

𝐿
(1, 1, 1) solved in the

scheme KSS/RG (red dashed) and the scheme LWLY (black solid) with the pure S-wave phase shift. Gray
short dotted lines represent non-interacting energies.

5. Summary

In this proceeding, we introduce the three-momentum transformation in the finite volume. Our
generalized boost transformation can reproduce previous work, and also provide a new one. The
new one transformation parameters are all independent on the total energy in the system, which is
suitable for using the HEFT to compute the energy levels of finite volume. At last, we also make an
example to show our method is consistent with previous ones.
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