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1. Introduction

Excitons, charge-neutral bosonic quasi-particles formed by the binding of an electron and a hole,
occupy a central role in modern condensed matter physics. Their importance impacts fundamental
physics as well as technological applications, including quantum computing [1], optoelectronics
[2] [3], and energy-efficient devices [4]. Excitons are main energy carriers in materials such as
perovskites, which are emerging as leading candidates for next-generation solar cells and LED
technologies [5] [6]. Furthermore, excitonic phenomena have been actively studied in carbon-based
bilayer systems, where tunable properties open new avenues for research and innovation [7] [8].

Understanding excitonic behavior poses significant theoretical challenges due to their bound-
state nature, which necessitates non-perturbative approaches. Their role as analogs to pions in
quantum chromodynamics (QCD), albeit without confinement, demonstrates the need for precise
calculations and comprehensive analyses to unravel their electronic properties.

The Hubbard model serves as a cornerstone for investigating strongly correlated electron
systems, providing a minimal yet versatile framework to study interactions in lattice structures. On
a honeycomb lattice, the model captures essential features of low-dimensional systems, including
Mott insulator transitions, magnetic ordering, and the emergence of Dirac cones in the electronic
spectrum. These properties make it particularly suitable for exploring two-body correlations and
their energy shifts relative to two-body thresholds, allowing for the systematic investigation of stable
excitonic states under varying interaction strengths and system parameters.

In this work, we explore the dynamics of excitons as well as other two-body excitations in
the Hubbard model on a honeycomb lattice, focusing on identifying stable states and analyzing
their energy shifts. By leveraging ab initio Quantum Monte Carlo (QMC) simulations, we measure
one- and two-body correlators across multiple spin-isospin channels, drawing parallels to particle
interactions in QCD. This study provides insights into dynamical binding phenomena and lays the
groundwork for future explorations of excitonic states in lattice systems.

2. Honeycomb Lattice

In this study, we implement the Hubbard model on a honeycomb lattice (Fig. 1 left). Structurally,
the honeycomb lattice consists of two triangular sublattices, making it a bipartite system, wherein
each site has nearest neighbors exclusively from the opposite sublattice. This bipartite nature is
foundational to the electronic and magnetic properties of the lattice, including the formation of
Dirac cones at the Fermi level and the behavior under various symmetry operations.

We conduct our analysis in momentum space, restricting our focus to the first Brillouin zone
(BZ), as higher zones can be mapped back into the first BZ via periodic boundary conditions.
Within this zone (Fig. 1 right), the key points of interest include the center (Γ), the high-symmetry
corners (𝐾, 𝐾 ′), and the edge centers (𝑀, 𝑀 ′, 𝑀 ′′). These points serve as essential references for
analyzing symmetry operations, topological features, and electronic states.

2.1 Symmetries

The honeycomb lattice exhibits inherent symmetries due to its periodic crystal structure. These
symmetries impose constraints that must be considered in the formulation of the Hubbard model
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Figure 1: LEFT: Honeycomb lattice featuring color-coded sites for the two triangular sublattices. The lattice
vectors are indicated by red arrows, illustrating the structural periodicity. RIGHT: First and second Brillouin
zones of the honeycomb lattice. Key points of interest, including the center (Γ), the high-symmetry corners
(𝐾, 𝐾 ′), and the edge centers (𝑀, 𝑀 ′, 𝑀 ′′), are highlighted for symmetry and electronic state analysis.

within this lattice. For instance, it is possible to leave the first BZ when adding momenta together
(so-called Umklapp scattering)

𝐾 + 𝐾 ′ = Γ, 𝐾 + 𝐾 = 𝐾 ′, 𝐾 ′ + 𝐾 ′ = 𝐾. (1)

These relations are instrumental when applying group theory methods to classify states and inter-
actions.

In our approach, we transition from individual momenta 𝑘 and 𝑙 of the particles to the total
momentum 𝑃 and the relative momentum 𝑝 of the two-body system. This transformation leverages
the conservation of total momentum

𝑘, 𝑙 → 𝑃, 𝑝.

This approach allows for a more straightforward analysis of interacting particle pairs.
Additionally, we construct shells of relative momentum 𝑝 within the irreducible representations

of the lattice’s little group for a given total momentum 𝑃. This construction is essential for studying
possible Umklapp scattering and understanding the system’s interaction dynamics.

3. Hubbard Model

The Hubbard model is a fundamental framework for studying interacting particles on a lattice,
particularly electrons in condensed matter systems. It provides insight into phenomena such as
magnetism, superconductivity, and Mott insulator transitions. Notably, the Hubbard model permits
single-electron excitations, contrasting with QCD, which forbids single-quark excitations due to
color confinement. This distinction highlights the unique nature of the Hubbard model’s excitation
dynamics.

The Hamiltonian consists of a kinetic ‘tight-binding’ term describing particle hopping between
sites and an interaction term representing on-site electron-electron repulsion. In many cases, the
Hamiltonian written in the particle-hole basis provides a more convenient form for computation. It
is written as
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𝐻 = −𝜅
∑︁
⟨𝑥,𝑦⟩

(
𝑝†𝑥 𝑝𝑦 − ℎ†𝑥ℎ𝑦

)
+ 𝑈

2

∑︁
𝑥

𝑞2
𝑥 , (2)

where 𝑝𝑥 and ℎ𝑥 represent the particle and hole operators, respectively, and 𝜅 is the hopping
parameter. The expression ⟨𝑥, 𝑦⟩ denotes a nearest neighbor pair, and the sum is over all possible
such pairs. The charge operator takes the form 𝑞 = 𝑛𝑝 −𝑛ℎ, with 𝑛𝑝 and 𝑛ℎ as the number operators
for particles and holes at each site and 𝑈 represents the on-site interaction strength. This form
simplifies certain calculations by emphasizing the duality between particles and holes.

3.1 Non-interacting case

For the non-interacting case (𝑈 = 0), an exact solution exists at half-filling (𝜇 = 0), yielding
the dispersion relation [9]

𝐸 ®𝑘± = ±(−𝜅)

√√√
3 + 2

(
cos

(
3
2
𝑘𝑥 +

√
3

2
𝑘𝑦

)
+ cos

(
3
2
𝑘𝑥 −

√
3

2
𝑘𝑦

)
+ cos

(√
3𝑘𝑦

))
, (3)

where ®𝑘 is the momentum of the electron. This dispersion relation results in a two-band structure
that can be utilized to calculate multi-particle energies. The bands meet at the Dirac points,
®𝑘𝐷 =

(
2𝜋
3 ,±

2𝜋
3
√

3

)
, forming linear energy crossings that resemble the physics of massless relativistic

particles. This structure serves as a basis for studying more complex interactions.

3.2 One-body band gap

When 𝑈 ≠ 0, electron-electron interactions lead to correlated behavior that is absent in the
non-interacting case. At large 𝑈, electrons experience strong on-site repulsion, which can lead to
phenomena like the Mott insulator transition. Such interactions also give rise to magnetic ordering
(e.g., antiferromagnetic order) at half-filling due to superexchange, a hallmark feature of the strongly
interacting Hubbard model. It has been shown in the one-body states that a band gap forms [10]
[11]. It emerges at the critical coupling 𝑈𝑐 = 3.834(14). This naturally raises the question of
how two-body excitations behave above and below this critical coupling, such as whether they
form bound states. In this work we initially concentrate on investigating the behavior of two-body
excitations slightly below the critical coupling.

4. Correlation Functions

We now define the relevant interpolating operators and correlation functions which form the
basis of our analysis. We investigate two-point correlation functions in the context of the Hubbard
model and quantum chromodynamics (QCD), focusing on their respective treatment of one- and
two-body excitations and internal symmetry structures. Our two-point correlation functions are
defined as follows

𝐶 (𝜏) = ⟨O(𝜏)O†(0)⟩ (4)

where O(𝜏) and O†(0) denote time-evolved operators at time 𝜏 and time 0, respectively.
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We identify the two internal degrees of freedom within the Hubbard model as spin and isospin.
The third component of isospin, 𝐼𝑧 , is related to the particle’s electric charge 𝑄 = 2𝐼𝑧 , where it is
a matter of convention for assigning either particles or holes a positive charge. In Table 1, we have
shown our adopted assignment convention.

4.1 Two-body Correlation Functions

𝑆𝑧 =
1
2 𝑆𝑧 = − 1

2
𝐼𝑧 =

1
2 𝑝† ℎ

𝐼𝑧 = − 1
2 ℎ† 𝑝

Table 1: One-body spin-isospin
states

Building upon the one-body operators, we construct all pos-
sible two-body correlation operators, represented in Table 2.
These operators, which are structured analogously to Clebsch-
Gordan coefficients, allow us to systematically explore two-body
interactions. In this analysis, we focus specifically on two rep-
resentative interaction channels – (5) and (6). We expect that
channels characterized by 𝐼𝑧 = ±1 (𝑄 = ±2) exhibit repulsive
interactions, while channels with 𝐼𝑧 = 0 (𝑄 = 0) are attractive.
For symmetry reasons, there is a spin degeneracy among channels within each row of the tables, as
well as symmetry between positive and negative values of 𝐼𝑧 . Our simulations do indeed exhibit
these symmetries.

(a) 𝐼 = 0, 𝑆 = 0

𝑆𝑧 = 0
𝐼𝑧 = 0 1

2

(
𝑝𝑖𝑝

†
𝑗
+ 𝑝†

𝑖
𝑝 𝑗 + ℎ𝑖ℎ†𝑗 + ℎ

†
𝑖
ℎ 𝑗

)
(b) 𝐼 = 0, 𝑆 = 1

𝑆𝑧 = 1 𝑆𝑧 = 0 𝑆𝑧 = −1
𝐼𝑧 = 0 1√

2

(
𝑝
†
𝑖
ℎ
†
𝑗
+ ℎ†

𝑖
𝑝
†
𝑗

)
1
2

(
𝑝𝑖𝑝

†
𝑗
− 𝑝†

𝑖
𝑝 𝑗 + ℎ𝑖ℎ†𝑗 − ℎ

†
𝑖
ℎ 𝑗

)
1√
2

(
𝑝𝑖ℎ 𝑗 − ℎ𝑖𝑝 𝑗

)
(c) 𝐼 = 1, 𝑆 = 0

𝑆𝑧 = 0
𝐼𝑧 = 1 1√

2

(
𝑝
†
𝑖
ℎ 𝑗 − ℎ𝑖𝑝†𝑗

)
𝐼𝑧 = 0 1

2

(
𝑝
†
𝑖
𝑝 𝑗 − 𝑝𝑖𝑝†𝑗 + ℎ𝑖ℎ

†
𝑗
− ℎ†

𝑖
ℎ 𝑗

)
𝐼𝑧 = −1 1√

2

(
𝑝𝑖ℎ

†
𝑗
− ℎ†

𝑖
𝑝 𝑗

)

(d) 𝐼 = 1, 𝑆 = 1

𝑆𝑧 = 1 𝑆𝑧 = 0 𝑆𝑧 = −1
𝐼𝑧 = 1 𝑝

†
𝑖
𝑝
†
𝑗

1√
2

(
𝑝
†
𝑖
ℎ 𝑗 + ℎ𝑖𝑝†𝑗

)
ℎ𝑖ℎ 𝑗

𝐼𝑧 = 0 1√
2

(
𝑝
†
𝑖
ℎ
†
𝑗
+ ℎ†

𝑖
𝑝
†
𝑗

)
1
2

(
𝑝𝑖𝑝

†
𝑗
+ 𝑝†

𝑖
𝑝 𝑗 − ℎ𝑖ℎ†𝑗 − ℎ

†
𝑖
ℎ 𝑗

)
1√
2

(
𝑝𝑖ℎ 𝑗 + ℎ𝑖𝑝 𝑗

)
𝐼𝑧 = −1 ℎ

†
𝑖
ℎ
†
𝑗

1√
2

(
𝑝𝑖ℎ

†
𝑗
+ ℎ†

𝑖
𝑝 𝑗

)
𝑝𝑖𝑝 𝑗

Table 2: Two-body spin-isospin states. The colored interpolating operators correspond to the ones studied
in this work.

We take advantage of the time-translation invariance of our system to average of multiple time-
sources when performing measurements. In some channels the 𝜏 = 0 (equal-time) contribution to
the correlator can have delta-function contributions due to the anti-commutation relations of the
fermions. We avoid these contributions by only considering the correlation function for 𝜏 > 0.

Following these conventions, we can proceed with the derivation of the spin-isospin correlation
functions across connected and disconnected channels. For instance:

𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 1, 𝑆𝑧 = 1:(
𝑝
†
𝑖
𝑝
†
𝑗

) (
𝑝𝑘 𝑝𝑙

)
= 𝑝

†
𝑖
𝑝
†
𝑗
𝑝𝑘 𝑝𝑙 + 𝑝†𝑖 𝑝

†
𝑗
𝑝𝑘 𝑝𝑙

= 𝑝
†
𝑖
𝑝𝑙 𝑝

†
𝑗
𝑝𝑘 − 𝑝†𝑖 𝑝𝑘 𝑝

†
𝑗
𝑝𝑙

= 𝑝𝑙 𝑝
†
𝑖
𝑝𝑘 𝑝

†
𝑗
− 𝑝𝑘 𝑝†𝑖 𝑝𝑙 𝑝

†
𝑗

= 𝑀−1
𝑙𝑖

[𝜙] (−𝜏)𝑀−1
𝑘 𝑗

[𝜙] (−𝜏) − 𝑀−1
𝑘𝑖

[𝜙] (−𝜏)𝑀−1
𝑙 𝑗

[𝜙] (−𝜏)

(5)
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𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 0, 𝑆𝑧 = 1:

1
2

(
𝑝
†
𝑖
ℎ
†
𝑗
+ ℎ†

𝑖
𝑝
†
𝑗

) (
ℎ𝑘 𝑝𝑙 + 𝑝𝑘ℎ𝑙

)
=

1
2

(
𝑝
†
𝑖
ℎ
†
𝑗
ℎ𝑘 𝑝𝑙 + 𝑝†𝑖 ℎ

†
𝑗
𝑝𝑘ℎ𝑙 + ℎ†𝑖 𝑝

†
𝑗
ℎ𝑘 𝑝𝑙 + ℎ†𝑖 𝑝

†
𝑗
𝑝𝑘ℎ𝑙

)
=

1
2

(
𝑝𝑙 𝑝

†
𝑖
ℎ𝑘ℎ

†
𝑗
− 𝑝𝑘 𝑝†𝑖 ℎ𝑙ℎ

†
𝑗
− ℎ𝑘ℎ†𝑖 𝑝𝑙 𝑝

†
𝑗
+ ℎ𝑙ℎ†𝑖 𝑝𝑘 𝑝

†
𝑗

)
=

1
2
(𝑀−1

𝑙𝑖
[𝜙] (−𝜏)𝑀−1

𝑘 𝑗
[−𝜙] (−𝜏) − 𝑀−1

𝑘𝑖
[𝜙] (−𝜏)𝑀𝑙 𝑗 [−𝜙] (−𝜏)

− 𝑀−1
𝑘𝑖

[−𝜙] (−𝜏)𝑀−1
𝑙 𝑗

[𝜙] (−𝜏) + 𝑀−1
𝑙𝑖

[−𝜙] (−𝜏)𝑀−1
𝑘 𝑗

[𝜙] (−𝜏))

(6)

Initially, sixteen interpolating operator channels are theoretically possible: four involving discon-
nected diagrams (which present additional computational challenges) and twelve involving only
connected diagrams. By applying symmetry considerations – such as isospin and spin parity – we
reduce these to six independent channels, including two disconnected diagram channels.

5. Data Analysis

The analysis was conducted for two distinct total momenta, Γ and𝐾 (or equivalently𝐾 ′). These
specific momenta were chosen because, although 𝐾 is not located at the center of the Brillouin
zone (BZ), its energy is lower than that of Γ, as indicated by the dispersion relation of the one-body
energies (3). A side goal of this analysis was to determine whether this trend persists at the two-body
level. Furthermore, we analyzed configurations where the single-body momenta at the source and
sink are denoted by 𝐾 and 𝐾 ′, respectively (Fig. 1 right). The system under consideration is the
18-sites honeycomb lattice (with periodic boundary conditions) and interaction strength 𝑈 = 3.0.
We present results across different inverse temperatures (𝛽) and number of timeslices (𝑁𝑡 ).

Due to the symmetry properties of the one-body and two-body correlation functions, a direct
exponential fit to the data was not performed. Instead, we analyzed the correlators leveraging their
symmetric forms:

𝑓 1(𝑡) =
∑︁
𝑛

𝐴1
𝑛 cosh

(
𝐸1
𝑛

(
𝑡 − 𝛽

2

))
,

𝑓 2(𝑡) =
∑︁
𝑛

𝐴2
𝑛 cosh

(
𝐸2
𝑛

(
𝑡 − 𝛽

2

))
+ 𝐶,

(7)

where 𝑓 1/2(𝑡) correspond to either one- or two-body correlators, 𝐴1/2
𝑛 represent the overlap factors,

𝐸
1/2
𝑛 are the energies of the respective states, and 𝐶 accounts for the backpropagating states. We

use correlated fits to these models and perform model averaving according to the AIC [12]. Priors
are chosen from perturbative calcualtions [13]. Using this formulation, we extract ground-state
energies (Fig. 2), which serve as a basis for calculating the energy shift, Δ𝐸0 = 𝐸2

0 − 2𝐸1
0 . The

computedΔ𝐸0 provides a quantitative measure of the energy shift in the two-body ensemble relative
to the one-body threshold. Following this, the results are to be extrapolated to the continuum limit
(𝑁𝑡 → ∞). As these results are obtained at different 𝛽s, an extrapolation 𝛽 → ∞ is required to
validate low-temperature behavior.

These procedures are iteratively performed for each channel and the irreducible representation
under study. In this work, we focus exclusively on the 𝐴1 irreducible representation, which captures

6
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Best two-body fit

One-body correlation function (Q= 1)

Two-body correlation function (Q= 2)

Figure 2: One- and two-body 𝐾-point correlators for the 18-sites honeycomb lattice with𝑈 = 3.0, 𝛽 = 12.0,
and 𝑁𝑡 = 96 with their respective best fits.
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Nt = 32 Nt = 64 Nt = 80 Nt = 96Nt = 32 Nt = 64 Nt = 80 Nt = 96Nt = 32 Nt = 64 Nt = 80 Nt = 96Nt = 32 Nt = 64 Nt = 80 Nt = 96

Figure 3: Energy shifts observed for two different interaction channels with distinct net charges at two total
momenta and𝑈 = 3.0. Colored markers represent data at varying timeslices, at specific inverse temperatures
(𝛽). Black points denote extrapolated results in the continuum limit at zero temperature.

the symmetric properties pertinent to the analysis. Figure 3 illustrates the energy shifts observed
for two different interaction channels characterized by distinct net charges and evaluated at two
separate total momenta. The colored markers in the figure represent data points obtained at various
timeslices and specific inverse temperatures. Ideally, we would first perform a continuum-limit
extrapolation using the results at different 𝑁𝑡 , and then perform a subsequent 𝛽 → ∞ (zero-
temperature) extrapolation. Unfortunately, the results for different 𝑁𝑡 are too noisy to allow for
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a reliable continuum extrapolation, and this in turn precludes a zero-temperature extrapolation.
With the current quality of our data we can at most fit a constant to these results to estimate
both continuum and zero-temperature extrapolations, as shown by the black points. We note that
perturbative calculations have shown that the energy’s dependence on 𝛽 is minimal, remaining
nearly constant across a large range [13], which further motivates our approach here.

These findings highlight the consistency of the analysis framework, particularly when evaluat-
ing different interaction channels and their associated energy shifts under the symmetry constraints
of the 𝐴1 representation and momenta 𝐾/𝐾 ′, Γ. This method sets a foundation for further inves-
tigation of two-body excitations and interaction effects in the Hubbard model implemented on a
honeycomb lattice.

6. Summary and Outlook

In this work, we analyzed two-body excitations in the Hubbard model implemented on a
honeycomb lattice. Focusing on two representative channels, we observed that the attractive
channel with net charge zero exhibited more substantial negative energy shifts compared to the
repulsive channel with non-zero charge. The attractive channel demonstrated negative energy shifts
across both total momenta analyzed, while the repulsive channel displayed close to zero energy
shifts under the same conditions. These findings indicate that the particles within the𝑄 = 0 channel
exhibit a stronger mutual attraction, though further investigation is needed to determine whether
this shift signifies a true bound state or merely attractive interactions without binding.

Future work will involve generating additional ensembles to reach the continuum, zero-
temperature, and thermodynamic limits. Additionally, we aim to find the dependence of the
energy shift on the interaction strength Δ𝐸0 (𝑈) particularly for values above the critical coupling
𝑈𝑐, perform simulations at non-zero chemical potentials (𝜇 ≠ 0), and improve statistical precision
by incorporating more data points into extrapolations. This study provides a foundational step
towards understanding excitonic behavior in lattice systems, with implications for both fundamental
research and technological applications.
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