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Generative models, particularly normalizing flows, have shown exceptional performance in learn-
ing probability distributions across various domains of physics, including statistical mechanics,
collider physics, and lattice field theory. In the context of lattice field theory, normalizing flows
have been successfully applied to accurately learn the Boltzmann distribution, enabling a range
of tasks such as direct estimation of thermodynamic observables and sampling independent and
identically distributed (i.i.d.) configurations.
In this work, we present a proof-of-concept demonstration that normalizing flows can be used to
learn the Boltzmann distribution for the Hubbard model. This model is widely employed to study
the electronic structure of graphene and other carbon nanomaterials. State-of-the-art numerical
simulations of the Hubbard model, such as those based on Hybrid Monte Carlo (HMC) methods,
often suffer from ergodicity issues, potentially leading to biased estimates of physical observables.
Our numerical experiments demonstrate that leveraging i.i.d. sampling from the normalizing flow
effectively addresses these issues.
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1. Introduction

The Hubbard model is a condensed matter model describing the interaction of strongly coupled
electronic systems. Studying this model often poses severe challenges for numerical simulations,
primarily due to its multi-modal nature and intricate energy landscape. Standard sampling methods,
such as Hybrid Monte Carlo (HMC), often suffer from ergodicity problems [1], potentially leading
to biased and inaccurate estimates of physical observables. Novel techniques have been developed
towards having more efficient samplers, such as the combination of HMC with radial updates [2].

In these proceedings, we deploy a deep generative machine learning approach to overcome
the ergodicity issue in the context of the Hubbard model. Deep generative models, also known as
generative neural samplers (GNSs), in particular normalizing flows [3–5] and autoregressive neu-
ral networks [6, 7], have demonstrated great capabilities for modeling Boltzmann distributions of
physical and chemical systems. These generative approaches, often known as Boltzmann genera-
tors [8], have lately emerged in various fields, ranging from lattice quantum field theory [9–12] to
statistical mechanics [13, 14] to string theory [15, 16] to quantum chemistry [8, 17, 18]. Generative
neural samplers hold promise not only for allowing faster and more efficient sampling, but also for
directly estimating thermodynamic observables [10] as well as entanglement entropies [19, 20], and
Feynman propagators [21]. Furthermore, recent studies demonstrate that GNSs are highly effective
in sampling from distributions with challenging topologies, such as bimodal distributions [22, 23]
and gauge theories affected by topological freezing [24]. This positions GNSs as a well-suited
alternative for sampling from challenging probability densities where HMC faces ergodicity issues.

Our work represents the first attempt in applying GNSs to the Hubbard model. Specifically, we
propose to use an equivariant normalizing flow [25] to efficiently learn the underlying probability
distribution. This approach allows us to directly incorporate an arbitrary number of symmetries in
the neural network design.

The remainder of this paper is organized as follows: First, in Sec. 2, we introduce the Hubbard
model and discuss how standard HMC methods struggle with ergodicity. In Sec. 3, we introduce
equivariant normalizing flows and elaborate on their application to the Hubbard model. We present
numerical experiments in Sec. 4 to prove the advantages of the proposed method compared to stan-
dard HMC. Finally, we provide conclusions and an outlook in Sec. 5.

2. Hubbard Model

2.1 Theoretical Background

The Hubbard model [26] describes the interaction of fermions on a spatial lattice of fixed ions,
where the atomic grid is considered static. It is capable of describing a vast amount of physical
systems [27], most widely applied to model carbon nanostructures and other graphene formations.

The dynamics of the Hubbard model at half-filling, i.e., with vanishing chemical potential, are
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described by the Hamiltonian

�U = �TB + U
*

2

∑
G

(
=G,↑ − =G,↓

)
− (1 − U)*

2

∑
G

(
=G,↑ − =G,↓

)2
, (1)

�TB = −^
∑
〈G,H〉

(
0†G0H − 1†G1H

)
, (2)

where Eq. (2) is often referred to as the tight-binding Hamiltonian. It describes the binding and
hopping of particles between adjacent atomic sites in a solid state, with ^ being responsible for the
hopping dynamics. The operators 0†G (0G) and 1

†
G (1G) create (annihilate) a spin-up and spin-down

particle, respectively, with the number operator =G,↑ = 0
†
G0G for a spin-up particle. In Eq. (1), the

parameter * describes the on-site interaction strength, while U ∈ [0, 1] continuously parametrizes
the choice of basis, i.e., U = 0 denotes the spin basis and U = 1 the particle/hole basis. Thus, the
parameter U defines the physical interpretation of the degrees of freedom, i.e., particles with spin
up or down versus particles and holes, respectively. In this work, we will restrict ourselves to the
particle/hole (ph) basis, while in future work we will extend our analysis to the spin basis.

A probabilistic interpretation of the partition function

/ph = tr
(
4−V�U=1

)
(3)

requires the transition to a path integral formulation, which is achieved by discretizing the inverse
temperature V into #C evenly spaced, so-called time-slices and performing a Suzuki-Trotter decom-
position of second order [28, 29]. Furthermore, to decouple a quartic fermionic term appearing in
the path integral, a continuous Hubbard-Stratonovich (HS) transformation [30] is needed,

4−
1
2*̃=2

=
1

√
2c*̃

∫ ∞

−∞
dq 4

− 1
2*̃ q2±8q=

, (4)

where *̃ ≡ *V/#C is the rescaled on-site interaction strength, = = =↓ − =↑ is a fermionic number
operator, and q is a bosonic auxiliary field. This transformation reduces the power of the Grass-
manian fields from four to two at the cost of introducing one bosonic auxiliary field per fermionic
degree of freedom. Lastly, by inserting coherent fermionic states and integrating out the remaining
fermionic degrees of freedom using standard Gaussian integrals, the partition function is rendered
purely dependent on the bosonic fields [31–34],

/ph =

∫ ∞

−∞

[∏
G,C

dqGC

]
4−( [q] , (5)

with the Hubbard action defined as

([q] = 1
2*̃

∑
G,C∈Λ

q2
GC − log det " [8q] − log det " [−8q], (6)

where Λ = #G × #C is the space-time volume of the lattice and GC represents a site on the lattice.
The fermion matrix " in the exponential discretization1 reads

"4 [q]G′C ′ ,GC = XG′ ,GXC ′ ,C − [4ℎ]G′ ,G4qGCBC ′XC ′ ,C+1, (7)

1There are other choices for incorporating the hopping term in the fermion matrix, such as the diagonal [31, 34] or
the linear [33] discretization. However, all discretizations agree in the continuum limit #C → ∞ [1].
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with the hopping matrix ℎG′ ,G = ^X〈G′ ,G〉 . Here, B explicitly incorporates anti-periodic boundary
conditions in the temporal direction C, i.e., BC = +1 for 0 < C < #C and B0 = −1. Taking a closer
look at the Hubbard action in Eq. (6), we see that it contains two different components: a Gaussian
term and a fermion determinant. The first one stems from the Hubbard-Stratonovich transformation
in Eq. (4) and accounts for the on-site interaction previously introduced in Eq. (1), while the latter
one encodes the hopping dynamics described by the tight-binding Hamiltonian in Eq. (2).

In these proceedings, we focus on a 1 + 1D lattice, where the spatial lattice extent is fixed to
two, i.e. #G = 2, and we consider different temporal lattice extents, #C . Unless specified otherwise,
we work in the particle/hole basis with the fermion matrix in the exponential discretization.

2.2 Symmetries of the Hubbard Action

The Hubbard action in Eq. (6) obeys a large set of symmetries. Generally, these can be symmetries
of the entire action or symmetries only preserving the fermion determinant. For a comprehensive
discussion of the symmetries of the Hubbard model, we refer the reader to [1]. In the following, we
outline the specific symmetries that will be relevant for these proceedings:

• Z2-Symmetry: The entire action is invariant under a sign-flip transformation

q → −q,

i.e., in this choice of basis, the action is invariant under the exchange of particles and holes.
Note that this is only a symmetry on bipartite lattices at half-filling.

• Space-Translation Symmetry: Under the condition that the on-site interaction strength* is
uniform across the entire lattice, the action is invariant under the exchange of all spatial sites,
i.e.,

(qG1 , qG2) → (qG2 , qG1).

• Periodicity Symmetry: The only symmetry of relevance that is not preserved by the Gaussian
part of the action is the 2c periodicity symmetry of the fermion determinant [1]. As can be
seen in Eqs. (6) and (7), the determinant "4 [8q] only depends on 48q and is therefore invariant
under

qGC → qGC + = · 2c, = ∈ Z.

These symmetries will become important in Sec. 3.1 for designing equivariant normalizing flows.

2.3 Hybrid Monte Carlo Simulations

One widely used method to generate samples for the Hubbard model is the Hybrid Monte Carlo
(HMC) algorithm [35]. While HMC is extremely successful in various applications, it faces sub-
stantial challenges when being applied to the Hubbard model. As illustrated in Fig. 1, the density
for a (#G , #C ) = (2, 1) lattice consists of diagonal bands separated by infinite potential barriers,
with an underlying periodic blob structure, ‘‘wrapped’’ by a Gaussian. The multi-modal nature of
this distribution presents significant ergodicity challenges, as the leapfrog integrator is repelled by
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Figure 1: HMC configurations for a (#G , #C ) = (2, 1) lattice with parameters V = ^ = 1 and * = 18,
generated with a leapfrog integrator with an integration step of n = 0.1 (left) and n = 1.0 (right). The
integrated autocorrelation time gint and the acceptance rate 0 are gint = 83 ± 14 and 0 = 99.9% (left) and
gint = 346±100 and 0 = 86.9% (right), respectively. Histograms of the magnetization, obtained by summing
along each dimension, respectively, are shown at the top and on the right hand side of the figures. The
analytical contours are exact for #C = 1 and in the strong-coupling limit, i.e. */^ → ∞, for #C > 1. The
colormap ranging from purple to yellow represents the areas of low and high density, respectively.

high potential barriers. This makes it hard to tunnel between the modes and reach every point in
configuration space, as shown in the left panel of Fig. 1. Furthermore, the separation of the dif-
ferent regions in the #G#C -dimensional configuration space is determined by manifolds where the
fermion determinant vanishes. These manifolds are of codimension 1 [1], i.e., they are of dimension
#G#C − 1, and, as a result, are present at all lattice sizes.

This issue may be addressed by a coarser integrator since the proposed configurations in the
Markov chain have a larger spread. However, a coarser integrator leads to a substantial decrease
in the acceptance rate, along with an increase in the integrated autocorrelation time gint, as demon-
strated in the right panel of Fig. 1.

3. Normalizing Flows

A normalizing flow [4, 5] is a parametric bijective map, 5\ : Z,→ K from a latent space Z with
a simple prior distribution @/ (I), e.g., a Gaussian, to a target space K with a target distribution
?(q). In the case of coupling-based normalizing flow [36, 37], this map consists of a series of
invertible and differentiable transformations 5 8 (see Fig. 2), each parametrized by neural networks
with parameters \8 . This ensures bijectivity of the entire map, yielding

5\ (I) =
(
5 ; ◦ 5 ;−1 ◦ · · · ◦ 5 1

)
(I) , (8)

where the dependence on the parameters \8 for each block was omitted for ease of notation. During
the training of a normalizing flow, the parameters \8 of the neural networks parametrizing each block

5
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I H1
5 1(I)

H8 H8+1
5 8+1(H8)… 5 8 (H8−1)

H;… 5 ; (H;−1)
= q

I ∼ @/ (I) H8 ∼ @8
\
(H8) q ∼ @\ (H;) ≈ ?(q)

Figure 2: Schematic representation of a coupling-based normalizing flow. Starting with a Gaussian prior
distribution @/ (I) (left), the normalizing flow 5\ (I) maps the prior samples I to the target samples q through
a set of invertible functions 5 8 , each taking as input the output of the previous layer, H8−1, ultimately approx-
imating the target distribution ?(q) (right). In the context of lattice field theories, this target distribution
corresponds to the path integral distribution ?(q) = /−14−( [q] , where ([q] is the action of the theory.

5 8
\8

are optimized with the goal of enabling the normalizing flow to approximate a target distribution
?(q). Once the flow has been trained, sampling becomes efficient, as it only requires drawing
samples from the base distribution @/ (I) and transforming them according to the parametrized map
5\ (I), thus allowing for embarrassingly parallelizable generation of independent and identically
distributed (i.i.d) samples from the approximated density @\ (I) ≈ ?(q).

When considering lattice field theories, the goal is to generate samples from the path inte-
gral distribution of the theory. Therefore, the target density to sample from is given by ?(q) =

/−14−( [q] , where / is the partition function. To approximate this distribution, the parameters \

of the normalizing flow are optimized by gradient descent while minimizing the so-called reverse
Kullback-Leibler divergence [38]

KL(@\ | |?) =
∫

D[q]@\ (q) ln
(
@\ (q)
?(q)

)
, (9)

which provides a measure of how much the variational distribution @\ generated by the normalizing
flow differs from the target distribution ?. The likelihood of @\ is known analytically,

@\ (q) = @I ( 5 −1
\ (q))

����d 5\dI

����−1
= @I (I)

����d 5\dI

����−1
, (10)

which allows to rewrite Eq. (9) as

KL(@\ | |?) = EI∼@/

[
([ 5\ (I)] − ln

����d 5\dI

���� (I) + ln @/ (I) + ln /

]
. (11)

This expression contains the logarithm of the partition function, which is unknown. However, being
a constant shift, this quantity vanishes upon taking the gradient with respect to the model parameters.

Each component of 5\ has to be designed such that each transformation is invertible and has a
tractable Jacobian to ensure the efficient computation of its determinant. Many architectures have
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been proposed that fulfill these requirements, we refer to Ref. [4] for an overview. In this work, we
use the so-called real-valued non-volume preserving (RealNVP) [37] transformation. This particu-
lar type of affine transformation requires two neural networks B\ and C\ , responsible for scaling and
shifting the input H;, respectively. Furthermore, to preserve the invertibility of the transformation,
the input sites H; are divided into two partitionings, H;on and H;off , and the transformation acting on
the on sites is restricted to depend on the complementary off sites,

H;+1
off = H;off ,

H;+1
on = H;on · exp

[
B\

(
H;off

)]
+ C\

(
H;off

)
.

(12)

This type of transformation ensures a tractable Jacobian determinant

det
mH;+1

mH;
=

�����I3 0
∗ diag

(
exp

[
B\

(
H;off

)] )����� , (13)

where 3 refers to the dimensionality of the off partitioning and H; is the output of the ;-th layer.
Every block 5 8 (H8−1), as shown in Fig. 2, is an instance of a RealNVP transformation, i.e., a

RealNVP block, with an alternating splitting between on and off partitionings, to ensure that the
entire input is transformed within two blocks.

3.1 Equivariant Normalizing Flows for the Hubbard Model

Equivariant normalizing flows [25, 39] have been proposed to integrate prior knowledge, e.g., known
symmetries, of the target distribution into the deep generative model, in order to make the bijective
map equivariant by design. Reducing redundancies in the distribution in this way leads to more
efficient training as well as more accurate results.

Let ) be some transformation that represents a symmetry of the target distribution. A neural
network 5\ (I) is equivariant with respect to ) if it fulfills [25]

5\ (I) = )−1 5\ ()I). (14)

This way, the input I gets transformed into the canonical cell of the theory, leaving the neural net-
work with the task of learning only the canonicalized distribution.

In the case of the Hubbard model, we leverage the symmetries introduced in Sec. 2.2 and define
the following set of transformations:

Z2-Symmetry : (I1, I2) ↦→
{
(I1, I2) if I1 + I2 ≥ 0
−(I1, I2) else

(15)

Space-Translation Symmetry : (I1, I2) ↦→
{
(I1, I2) if I1 − I2 ≤ 0
(I2, I1) else

(16)

Periodicity Symmetry : IGC ↦→ IGC − 2c · :, : = round
( IGC

2c

)
, (17)

where I is a sample taken from the Gaussian distribution and IG =
∑#C

C=1 IGC . An intuitive under-
standing of how these symmetries act on the base distribution is illustrated in Fig. 3: The periodicity
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Prior Gaussian distribution

Z2

Space translation

Periodicity

Canonicalized distribution

I2

I1

Figure 3: Transformation of the prior distribution into the canonical cell of the theory. Starting from a
Gaussian prior distribution (left), we apply three types of symmetry transformations (middle): Z2 symmetry
(top), space-translation symmetry (center), and periodicity symmetry (bottom). This results in a canonical
cell of triangular shape (right). The small black arrows indicate the mapping of three exemplary samples
under these transformation, indicating their position before and after the transformation has been applied.

symmetry maps every sample into a square of length 2c, while the Z2− and space-translation sym-
metries fold this square, resulting in a triangle. Inverting these symmetries can therefore be under-
stood as unfolding this triangle and mapping every sample back to its origin, i.e., going backward
by applying the inverse transformation )−1.

4. Results

In this section, we apply the aforementioned techniques to the Hubbard model by training a nor-
malizing flow 5\ to approximate the target distribution ?(q) = /−14−( [q] , where / and ([q] are
given by Eq. (5) and Eq. (6), respectively. As there is no guarantee that @\ ≡ ?, one should enforce
asymptotic unbiasedness [14]. To this end, one could either use the so-called NeuralMCMC or
metropolization technique by applying an accept-reject step to the i.i.d. samples from the normaliz-
ing flow, or perform neural importance sampling (NIS) [10]. The numerical experiments shown in
these proceedings are based on NeuralMCMC and have been obtained using a preliminary version
of the NeuLat software framework [40].

The top row of Fig. 4 shows our results for a single time-slice, i.e., a (#G , #C ) = (2, 1) system.
We see that, in this case, even a non-equivariant normalizing flow is able to capture the underlying
probability density, as displayed in the left column. However, when making the flow equivariant,
i.e., when including the equivariant layer to incorporate the symmetries into the model by design,
we observe a notable improvement in both training efficiency as well as the quality of the learned
distribution, as shown in the middle column. While the non-equivariant normalizing flow takes 25
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(N
x,

N
t)
=
(2
,1
)

(N
x,

N
t)
=
(2
,2
)

Non-equivariant Flow Equivariant Flow NeuralMCMC

Figure 4: Field configurations obtained with non-equivariant (left), equivariant (middle), and equivariant
and metropolized (right) normalizing flows. The marginalized magnetization, shown at the top and on the
right of each plot, is exact for #C = 1 and in the strong-coupling limit for #C > 1. The top and bottom
rows show results for (#G , #C ) = (2, 1) and (#G , #C ) = (2, 2) lattices, respectively. For #C ≥ 1, q{1,2}
is understood to be the sum in the temporal direction, i.e., q{1,2} =

∑#C

8=1 q{1,2}C . While the equivariant
approach is able to learn the structure for both lattice sizes to high precision, the non-equivariant flow is
unable to learn an approximate to the target distribution for #C > 1. Note that the slightly visible lines in
the equivariant distributions originate from a penalty term necessary to keep the normalizing flow bijective
while applying the symmetry transformation ) . The right-most plots on both rows have been obtained by
performing metropolization, i.e., filtering i.i.d. samples through a metropolis accept-reject step. This ensures
that the sampling from the approximate model @\ is asymptotically unbiased.

hours of training to achieve an acceptance rate of 75%, the equivariant counterpart converges to an
acceptance rate of 85% already after 16 minutes of training. This significant speedup in training is
illustrated in Fig. 5. Furthermore, when comparing the integrated autocorrelation times in Tab. 1,
we see a difference of a factor of two between the equivariant and non-equivariant approaches. Re-
markably, both approaches show a substantial improvement in the integrated autocorrelation time of
roughly two orders of magnitude compared to the standard HMC approach (see the caption of Fig. 1).

The bottom row of Fig. 4 shows our results for increasing the temporal extent of the lattice by
one, i.e., #C = 2. In this case, the non-equivariant normalizing flow is unable to learn the target
probability distribution, even after more than 24 hours of training, as shown in the left column.
The equivariant normalizing flow, in contrast, is able to approximately learn the target distribution,
as shown in the middle column. Here, it achieves an acceptance rate of 69.7% and an integrated

9
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Figure 5: Acceptance rate vs. training steps for a non-equivariant (red) and an equivariant (purple) normal-
izing flow for a (#G , #C ) = (2, 1) lattice. The equivariant approach yields acceptance rates above 80% after
four thousand training steps, while the non-equivariant only reaches 40%. In order to to reach an acceptance
rate of 70%, the non-equivariant flow would need more than seven-hundred thousand training steps.

autocorrelation time that is two orders of magnitude smaller than in the standard HMC approach
(see Tab. 1 and Fig. 1), thus indicating a much better sampler.

As mentioned in Sec. 2.2, the Z2- and space-translation symmetries leave the entire action
invariant, while the periodicity symmetry is only a symmetry of the fermion determinant, but not
of the Gaussian component of the action. In this sense, the periodicity symmetry can be seen as an
approximate symmetry. The effect of this ‘‘approximation’’ can be observed in the magnetization
of the equivariant distribution for (#G , #C ) = (2, 1), as shown in the second column of the top
row of Fig. 4, where the two outer peaks are tilted inwards and, therefore, do not follow the same
Gaussian envelope as the analytically obtained contours. However, the third column of the top row
of Fig. 4 demonstrates that this artifact can be removed by using the NeuralMCMC technique.2

5. Conclusion and Outlook

Well-established sampling methods like HMC often suffer from severe ergodicity problems when
being applied to the Hubbard model. In this work, we propose to use equivariant normalizing flows
to overcome these issues. We present a proof-of-concept demonstration that a normalizing flow
can be trained to approximate the target Boltzmann distribution of the Hubbard model and allows

2Note that the outer peaks for the equivariant distribution of (#G , #C ) = (2, 2) exhibit a similar tilting, see the second
column of the bottom row of Fig. 4. However, in this case, the analytical solution (solid black line) is not exact for #C > 1,
thus preventing a similar comparison with the ground truth as for the (#G , #C ) = (2, 1) case.
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Table 1: Integrated autocorrelation times gint of the equivariant and non-equivariant normalizing flow models
for different system sizes of the Hubbard model. Since the non-equivariant approach fails to produce a result
for #C > 1, a value for gint cannot be determined in this case.

(#G , #C ) gint, non−equivariant gint, equivariant

(2,1) 1.52 ± 0.04 0.71 ± 0.02
(2,2) - 1.17 ± 0.03

to efficiently sample configurations for a 2 × 1 lattice. Furthermore, we show that incorporating
symmetries of the action into an equivariant normalizing flow architecture lowers the training cost,
allows to achieve higher acceptance rates, and reduces the integrated autocorrelation times, com-
pared to the non-equivariant approach.

Nevertheless, making the flow equivariant generally carries the risk of breaking bijectivity, an
essential property of a normalizing flow. In order for the normalizing flow to retain this property,
one has to restrict the samples to remain inside the canonical cell through a penalty term in the loss.
While this works well for small systems, the canonical cell is expected to grow with the temporal
extent #C , thus reducing the advantage from canonicalizing the prior distribution for a larger number
of time-slices. In future work, we will focus on finding a rigorous way to preserve bijectivity of the
normalizing flow while incorporating symmetries, in order to use this framework to scale to larger
systems. Moreover, we will investigate the performance of normalizing flows for the Hubbard model
in different physical regimes, i.e., for various values of the coupling parameters of the theory.
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