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1. Introduction

The sign problem has been a major obstacle in first-principle computations of various physical
systems. A typical example is Yang-Mills theory with a topological term:

𝑆(𝑈) = 𝑆0(𝑈) − 𝑖𝜃𝑄(𝑈), (1)

where 𝑈 = (𝑈𝑥,𝜇) is a link variable, and 𝑆0(𝑈) (∈ R) and 𝑄(𝑈) (∈ R) are lattice expressions of
the Yang-Mills action and the topological charge, respectively:

𝑆0(𝑈) ∼ 1
2𝑔2

0

∫
𝑑𝑑𝑥 tr 𝐹𝜇𝜈 (𝑥)2, (2)

𝑄(𝑈) ∼
{

1
32𝜋2

∫
𝑑4𝑥 𝜖𝜇𝜈𝜌𝜎 tr 𝐹𝜇𝜈 (𝑥)𝐹𝜌𝜎 (𝑥) (𝑑 = 4)

1
4𝜋

∫
𝑑2𝑥 𝜖𝜇𝜈 𝐹𝜇𝜈 (𝑥) (𝑑 = 2, 𝑈 (1)). (3)

Our concern is to numerically estimate the expectation value of a physical observable O(𝑈) defined
by the path integral

⟨O⟩ ≡
∫
(𝑑𝑈) 𝑒−𝑆 (𝑈) O(𝑈)∫

(𝑑𝑈) 𝑒−𝑆 (𝑈)
. (4)

When 𝜃 ≠ 0, the action becomes complex, and thus the standard Markov chain Monte Carlo
method cannot be adopted directly. The standard workaround for such systems with complex actions
is the reweighting method, where ⟨O⟩ is estimated as a ratio of reweighted averages,

⟨O⟩ =
∫
(𝑑𝑈) 𝑒−𝑆0 (𝑈) 𝑒𝑖 𝜃𝑄 (𝑈) O(𝑈)∫

(𝑑𝑈) 𝑒−𝑆0 (𝑈) 𝑒𝑖 𝜃𝑄 (𝑈)
=

⟨𝑒𝑖 𝜃𝑄 (𝑈) O(𝑈)⟩rewt
⟨𝑒𝑖 𝜃𝑄 (𝑈)⟩rewt

. (5)

Here, the reweighted average ⟨ 𝑓 (𝑈)⟩rewt of a function 𝑓 (𝑈) is defined by

⟨ 𝑓 (𝑈)⟩rewt ≡
∫
(𝑑𝑈) 𝑒−𝑆0 (𝑈) 𝑓 (𝑈)∫

(𝑑𝑈) 𝑒−𝑆0 (𝑈)
. (6)

Since 𝑆0(𝑈) and 𝑄(𝑈) are local functionals, we expect that the numerator and the denominator in
Eq. (5) are both exponentially small (= 𝑒−𝑂 (𝑉 ) ) with lattice volume 𝑉 due to highly oscillatory
behaviors of integrands, and thus we need a sample whose size is exponentially large (𝑁conf = 𝑒𝑂 (𝑉 ) )
in order to reduce statistical errors of 𝑂 (1/

√
𝑁conf) relatively smaller than the mean (= 𝑒−𝑂 (𝑉 ) ).

This is the sign problem we consider in the present article.
The application of the Lefschetz thimble method [1–4] to Yang-Mills theories was first dis-

cussed in a seminal paper by Cristoforetti et al. [2], but it turned out that the original Lefschetz
thimble method generally encounters the ergodicity problem [5–8] when the integration surface is
deformed largely enough to relax the oscillatory behavior of path integrals. A general solution to
this dilemma of the reduction of the sign problem and the appearance of the ergodicity problem
was given by the tempered Lefschetz thimble (TLT) method [9–13], where the (parallel) tempering
algorithm was implemented to the Lefschetz thimble method using the deformation parameter as
a tempering parameter. This is the first algorithm that solves the sign and the ergodicity problems
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simultaneously. The drawback is its high numerical cost of 𝑂 (𝑁3) (𝑁: number of degrees of
freedom) together with the need to increase the number of replicas to maintain the acceptance in
exchanging configurations. This drawback was then resolved in the Worldvolume Hybrid Monte
Carlo (WV-HMC) method [14–16], where HMC updates are performed on the accumulation of
deformed surfaces (worldvolume).

The main aim of this article is to extend the WV-HMC algorithm to group manifolds. We
first prove Cauchy’s theorem for group manifolds, then write down the path integral over the
worldvolume. The correctness of the algorithm is checked for a simple model, the one-site model.

2. Cauchy’s theorem

2.1 Cauchy’s theorem for flat spaces

We start with recalling the role of Cauchy’s theorem in the Lefschetz thimble method for the
flat configuration space R𝑁 = {𝑥 = (𝑥𝑖)}, where the expectation value ⟨O⟩ takes the form

⟨O⟩ ≡
∫
R𝑁 𝑑𝑥 𝑒−𝑆 (𝑥 ) O(𝑥)∫

R𝑁 𝑑𝑥 𝑒−𝑆 (𝑥 )
. (7)

We first complexify the variable from 𝑥 = (𝑥𝑖) ∈ R𝑁 to 𝑧 = (𝑧𝑖) ∈ C𝑁 = R2𝑁 , and assume that
𝑒−𝑆 (𝑧) and 𝑒−𝑆 (𝑧) O(𝑧) are entire functions in C𝑁 . Then, the integration surface Σ0 = R𝑁 can be
continuously deformed to a new surface Σ without changing the values of integrals as long as the
boundaries at |Re 𝑧 | → ∞ are kept fixed:

⟨O⟩ =
∫
Σ
𝑑𝑧 𝑒−𝑆 (𝑧) O(𝑧)∫
Σ
𝑑𝑧 𝑒−𝑆 (𝑧)

. (8)

In the Lefschetz thimble method, we choose Σ such that Im 𝑆(𝑧) is almost constant there in order
to reduce the oscillatory behaviors of integrands.

It is Cauchy’s theorem that guarantees this invariance of integrals (see Fig. 1):

Theorem 1. Let D be a region in C𝑁 = R2𝑁 and 𝑓 (𝑧) a holomorphic function on D. Then, the
integral 𝐼Σ of 𝑓 (𝑧) over a real 𝑁-dimensional submanifold Σ ⊂ D,

𝐼Σ =

∫
Σ

𝑑𝑧 𝑓 (𝑧) (𝑑𝑧 ≡ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑁 ), (9)

depends only on the boundary of Σ.

Proof: We set Σ and Σ′ to be (oriented) real 𝑁-dimensional submanifolds in D with a common
boundary, and R a region surrounded by Σ and Σ′ (and thus 𝜕R = Σ′ − Σ). Then, due to Stokes’
theorem, we have

𝐼Σ′ − 𝐼Σ =

∫
𝜕R

𝑑𝑧 𝑓 (𝑧) =
∫
R
𝑑 [𝑑𝑧 𝑓 (𝑧)] = (−1)𝑁

∫
R
𝑑𝑧 ∧ 𝑑𝑓 (𝑧). (10)

Here, since 𝑑𝑓 (𝑧) = 𝑑𝑧𝑖 (𝜕 𝑓 (𝑧)/𝜕𝑧𝑖) + 𝑑𝑧𝑖 (𝜕 𝑓 (𝑧)/𝜕𝑧𝑖) = 𝑑𝑧𝑖 (𝜕 𝑓 (𝑧)/𝜕𝑧𝑖), we have

𝑑𝑧 ∧ 𝑑𝑓 (𝑧) = (𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑁 ) ∧ 𝑑𝑧𝑖︸                         ︷︷                         ︸
=0

𝜕 𝑓 (𝑧)
𝜕𝑧𝑖

= 0, (11)

which means that 𝐼Σ′ − 𝐼Σ = 0.
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)(
N

⊂ ℂD

′Σ

R

Σ

Figure 1: Cauchy’s theorem for C𝑁 .

2.2 Cauchy’s theorem for group manifolds

Now we consider the case where the configuration space is a group manifold and the expectation
value is given by a path integral of the form

⟨O⟩ ≡
∫
𝐺
(𝑑𝑈) 𝑒−𝑆 (𝑈) O(𝑈)∫
𝐺
(𝑑𝑈) 𝑒−𝑆 (𝑈)

. (12)

Below we construct Cauchy’s theorem for group manifolds, which will be used in the next section
to define the Lefschetz thimble method (and eventually the WV-HMC method) for group manifolds.

We first recall the definition of the Haar measure (𝑑𝑈) on a compact group 𝐺 = {𝑈}. Let
Lie𝐺 be the Lie algebra of 𝐺 with a basis {𝑇𝑎} (𝑎 = 1, . . . , 𝑁 (≡ dim𝐺)) which are taken to be
anti-hermitian (𝑇†

𝑎 = −𝑇𝑎) and normalized as tr𝑇𝑎𝑇𝑏 = −𝛿𝑎𝑏. We introduce the Maurer-Cartan
1-form by 𝜃0 ≡ 𝑑𝑈𝑈−1 = 𝑇𝑎 𝜃

𝑎
0 (𝜃𝑎0 : real 1-form), and define the metric by

𝑑𝑠2 ≡ tr 𝜃†𝜃 (= −tr 𝜃𝜃) = (𝜃𝑎0 )
2, (13)

which represents the distance between 𝑈, 𝑈 + 𝑑𝑈 ∈ 𝐺. The last expression indicates that {𝜃𝑎0 }
are the vielbeins of the metric. The Haar measure (𝑑𝑈) is then defined as the invariant volume
element, (𝑑𝑈) ≡ 𝜃1

0 ∧ · · · ∧ 𝜃𝑁0 (we ignore the normalization, which is irrelevant in the following
discussions). Note that the metric (and thus the Haar measure) is bi-invariant (i.e., both left- and
right-invariant).

The complexification 𝐺C of 𝐺 is defined as follows. We first complexify the linear space
Lie𝐺 =

⊕
𝑎 R𝑇𝑎 to (Lie𝐺)C ≡

⊕
𝑎 C𝑇𝑎 and introduce the commutator as the natural extension

of the original commutator,

[𝑋 + 𝑖𝑌 , 𝑋 ′ + 𝑖𝑌 ′] ≡ ([𝑋, 𝑋 ′] − [𝑌,𝑌 ′]) + 𝑖( [𝑋,𝑌 ′] + [𝑋 ′, 𝑌 ]) (𝑋,𝑌, 𝑋 ′, 𝑌 ′ ∈ Lie𝐺). (14)

The complexified group 𝐺C is then defined as the set of finite products of the exponentials of
elements in (Lie𝐺)C:

𝐺C ≡
{
𝑒𝑇𝑎𝑧

𝑎

𝑒𝑇𝑎𝑧
′𝑎 · · · 𝑒𝑇𝑎𝑧′′𝑎 | 𝑧𝑎, 𝑧′𝑎, . . . , 𝑧′′𝑎 ∈ C

}
. (15)

Then the following theorem holds (see Fig. 2) [17]:

Theorem 2. Let D be a region in 𝐺C and 𝑓 (𝑈) a holomorphic function on D. Then, the integral
𝐼Σ of 𝑓 (𝑈) over a real 𝑁-dimensional submanifold Σ ⊂ D,

𝐼Σ =

∫
Σ

(𝑑𝑈)Σ 𝑓 (𝑈), (16)
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depends only on the boundary of Σ. Here, for 𝑈, 𝑈 + 𝑑𝑈 ∈ Σ we introduce the Maurer-Cartan
form on Σ as

𝜃 ≡ 𝑑𝑈𝑈−1 = 𝑇𝑎 𝜃
𝑎, (17)

from which the holomorphic 𝑁-form (𝑑𝑈)Σ is defined as (𝑑𝑈)Σ ≡ 𝜃1 ∧ · · · ∧ 𝜃𝑁 .

)( G⊂
ℂ

D

Σ
U

U dU+

θ

Figure 2: Cauchy’s theorem for 𝐺C [17].

Proof: We first notice that the Maurer-Cartan equation 𝑑𝜃 = 𝜃 ∧ 𝜃 can be rewritten as 𝑑𝜃𝑎 =

(1/2) 𝐶𝑏𝑐
𝑎 𝜃𝑏 ∧ 𝜃𝑐 (𝐶𝑏𝑐

𝑎 are the structure constants, [𝑇𝑏, 𝑇𝑐] = 𝐶𝑏𝑐
𝑎𝑇𝑎), from which follows that

(𝑑𝑈)Σ is closed, 𝑑 (𝑑𝑈)Σ = 0. Then, the rest of proof goes in the same way as the flat case.

3. WV-HMC for group manifolds

Denoting the elements on the original integration surface by𝑈0 (∈ Σ0 ≡ 𝐺), Cauchy’s theorem
allows us to rewrite the expression (12) to the following form (see Fig. 3):

⟨O⟩ =
∫
Σ
(𝑑𝑈)Σ 𝑒−𝑆 (𝑈) O(𝑈)∫
Σ
(𝑑𝑈)Σ 𝑒−𝑆 (𝑈)

. (18)

Thus, even when the original path integral on Σ0 = 𝐺 suffers from the severe sign problem due to
the highly oscillatory behavior of 𝑒−𝑖Im 𝑆 (𝑈) , the situation is expected to be significantly remedied
if Im 𝑆(𝑈) is almost constant on the new integration surface Σ.

0
GΣ =

Σ

0
U

U

G
ℂ

R

θ

0
θ

Figure 3: Deformed surface Σ and worldvolume R in 𝐺C [17].

Such deformation is given by the anti-holomorphic flow equation,

¤𝑈 = [𝐷𝑆(𝑈)]†𝑈 with 𝑈 |𝑡=0 = 𝑈0, (19)

5
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where 𝐷 𝑓 (𝑈) for a holomorphic function 𝑓 (𝑈) is defined by

𝛿 𝑓 (𝑈) ≡ tr [(𝛿𝑈𝑈−1) 𝐷 𝑓 (𝑈)] . (20)

One can easily see that the real part Re 𝑆(𝑈) always increase along the flow except at critical points
(where 𝐷𝑆(𝑈) vanishes) while Im 𝑆(𝑈) is kept constant along the flow from the (in)equality

[𝑆(𝑈)]� = tr [( ¤𝑈𝑈−1)𝐷𝑆(𝑈)] = tr [(𝐷𝑆(𝑈))† (𝐷𝑆(𝑈))] ≥ 0. (21)

We are now in a position to rewrite the path integral (18) to the integral over a worldvolume.
We first notice that when we set the deformed surface to Σ = Σ𝑡 (deformed surface at flow time 𝑡),
the numerator and the denominator are both independent of 𝑡 due to Cauchy’s theorem, so that we
can take their averages over 𝑡 separately with an arbitrary common weight 𝑒−𝑊 (𝑡 ) :

⟨O⟩ =

∫
Σ𝑡
(𝑑𝑈)Σ𝑡

𝑒−𝑆 (𝑈) O(𝑈)∫
Σ𝑡
(𝑑𝑈)Σ𝑡

𝑒−𝑆 (𝑈)
=

∫
𝑑𝑡 𝑒−𝑊 (𝑡 ) ∫

Σ𝑡
(𝑑𝑈)Σ𝑡

𝑒−𝑆 (𝑈) O(𝑈)∫
𝑑𝑡 𝑒−𝑊 (𝑡 )

∫
Σ𝑡
(𝑑𝑈)Σ𝑡

𝑒−𝑆 (𝑈)
, (22)

which can be regarded as a ratio of integrals over the worldvolume R ≡ ⋃
𝑡 Σ𝑡 .

The invariant volume element |𝑑𝑈 |R of R can be expressed as follows. We first introduce the
Maurer-Cartan form on 𝐺C as Θ ≡ 𝑑𝑈𝑈−1, and define a metric as 𝑑𝑠2 ≡ trΘ†Θ, which represents
the distance between 𝑈, 𝑈 + 𝑑𝑈 ∈ 𝐺C. Note that the metric is only right-invariant with respect to
𝐺C but is still bi-invariant with respect to the original compact group 𝐺. Then, the induced metric
𝑑𝑠2

Σ
on Σ = Σ𝑡 is given by 𝑑𝑠2

Σ
≡ Re tr 𝜃†𝜃, where 𝜃 = 𝑑𝑈𝑈−1 is the Maurer-Cartan form on Σ

(𝑈, 𝑈 + 𝑑𝑈 ∈ Σ). Noting that 𝜃𝑎 is linear in 𝜃𝑎0 of the form 𝜃𝑖 = 𝐸 𝑖
𝑎 𝜃

𝑎
0 , we can rewrite the induced

metric as 𝑑𝑠2
Σ
= 𝛾𝑎𝑏 𝜃

𝑎
0 𝜃

𝑏
0 with 𝛾𝑎𝑏 = Re 𝐸 𝑖

𝑎𝐸
𝑖
𝑏
. Then the invariant volume element on Σ𝑡 is given

by

|𝑑𝑈 |Σ𝑡
=
√
𝛾 (𝑑𝑈0), (23)

with which the invariant volume element on R is expressed as

|𝑑𝑈 |R = 𝛼𝑑𝑡 |𝑑𝑈 |Σ𝑡
= 𝛼

√
𝛾 𝑑𝑡 (𝑑𝑈0), (24)

where 𝛼𝑑𝑡 is the geodesic distance between Σ𝑡 and Σ𝑡+𝑑𝑡 at 𝑈 (see Fig. 4). Meanwhile, the
holomorphic 𝑁-form can be written as

(𝑑𝑈)Σ = det𝐸 (𝑑𝑈0). (25)

Thus, we can rewrite the path integral (22) to the form [17]

⟨O⟩ =
∫
R |𝑑𝑈 |R 𝑒−𝑉 (𝑈) F (𝑈) O(𝑈)∫

R |𝑑𝑈 |R 𝑒−𝑉 (𝑈) F (𝑈)
, (26)

where 𝑉 (𝑈) and F (𝑈) are the potential and the associated reweighting factor, respectively, that are
defined as follows:

𝑉 (𝑈) ≡ Re 𝑆(𝑈) +𝑊 (𝑡 (𝑈)), (27)

F (𝑈) ≡
𝑑𝑡 (𝑑𝑈)Σ𝑡

|𝑑𝑈 |R
𝑒−𝑖Im 𝑆 (𝑈) = 𝛼−1 det𝐸

√
𝛾

𝑒−𝑖Im 𝑆 (𝑈) . (28)
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Figure 4: Invariant volume element |𝑑𝑈 |R of worldvolume R [17].

The path integral (26) can be further rewritten to an integral over a tangent bundle 𝑇R =

{(𝑈, 𝜋) |𝑈 ∈ R, 𝜋 ∈ 𝑇𝑈R} (⊂ 𝑇𝐺C) of the form [17]

⟨O⟩ =
∫
𝑇R 𝜔𝑁+1𝑒−𝐻 (𝑈,𝜋 ) F (𝑈) O(𝑈)∫

𝑇R 𝜔𝑁+1𝑒−𝐻 (𝑈,𝜋 ) F (𝑈)
, (29)

where the symplectic 2-form 𝜔 and the Hamiltonian 𝐻 (𝑈, 𝜋) are given, respectively, by

𝜔 = 𝑑 (Re tr 𝜋†𝜃), 𝐻 (𝑈, 𝜋) = 1
2

tr 𝜋†𝜋 +𝑉 (𝑈). (30)

Once the last expression (29) is obtained, one can resort to the standard algorithm of WV-HMC
[14, 16], which consists of constrained molecular dynamics (RATTLE) [18, 19] in the complexified
space (𝐺C in the current case) satisfying the exact reversibility and the exact volume preservation
as well as the approximate conservation of energy to the order of Δ𝑠2 at each molecular dynamics
step of step size Δ𝑠 (as is the case for standard HMC algorithms using leapfrogs). See Ref. [17] for
details.

4. Numerical test: one-site model

As a numerical test of the algorithm, we consider the one-site model defined by the action

𝑆(𝑈) ≡ 𝛽𝑒(𝑈) − 𝑖𝜃𝑞(𝑈)

≡ − 𝛽

4
tr (𝑈 +𝑈−1) − 𝜃

4𝜋
tr (𝑈 −𝑈−1). (31)

4.1 𝐺 = 𝑆𝑈 (2) with pure imaginary coupling

We consider 𝐺 = 𝑆𝑈 (2) with 𝛽 ∈ 𝑖 R and 𝜃 = 0. The analytic result is ⟨𝑒⟩ = −𝐼2(𝛽)/𝐼1(𝛽),
where 𝐼𝑘 (𝑘 = 1, 2) are the modified Bessel functions of the first kind. Figure 5 shows that the
obtained results are in good agreement with analytic values.

4.2 𝐺 = 𝑈 (2) with a topological term

We consider 𝐺 = 𝑈 (2) with 𝛽, 𝜃 ∈ R. The analytic result is ⟨𝑞⟩ = (𝑖𝜃/2𝜋2𝜁2) 𝐼2
1 (𝜁)/[𝐼

2
0 (𝜁) −

𝐼2
1 (𝜁)] with 𝜁 = (1/2)

√︁
𝛽2 − (𝜃/𝜋)2. Note that𝑈 (2) is not a simple product 𝑆𝑈 (2) ×𝑈 (1) (actually

7
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/ iβ
�� e� �

Figure 5: Values of Im ⟨𝑒⟩ for various 𝛽 ∈ 𝑖 R.

𝑈 (2) = 𝑆𝑈 (2) ×𝑈 (1)/Z2), and thus contributions to the topological term are not the same as those
from pure 𝑈 (1) subgroup although 𝑆𝑈 (2) elements do not affect the topological term due to G-
parity. Figure 6 shows the results for 𝛽 = 0.5 and 𝜃 = 𝑛𝜋 (𝑛 = 1, . . . , 5). We again see good
agreement with analytic values.

�� q� �

/θ π

Figure 6: Values of Im ⟨𝑞⟩ for various 𝜃 with 𝛽 = 0.5.

5. Conclusion and outlook

We have shown that WV-HMC algorithm can be extended to group manifolds [17]. The key
ingredient of the construction is again Cauchy’s theorem, which allows the introduction of the
worldvolume for a given group manifold and a given complex action. We have confirmed the
correctness of the algorithm by performing numerical simulations for the one-site model.

The application of the present formalism to lattice gauge theories is straightforward, on which
we are working now. The result on pure Yang-Mills theory with finite 𝜃 will be reported elsewhere.

Acknowledgments

The authors thank Sinya Aoki, Ken-Ichi Ishikawa, Issaku Kanamori, and Yoshio Kikukawa
for valuable discussions. This work was partially supported by JSPS KAKENHI (Grant Num-
bers 20H01900, 21K03553, 23H00112, 23H04506) and by MEXT as “Program for Promoting
Researches on the Supercomputer Fugaku” (Simulation for basic science: approaching the new
quantum era, JPMXP1020230411).

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
6
5

Extending the WV-HMC algorithm to group manifolds Masafumi Fukuma

References

[1] E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011)
347 [1001.2933].

[2] M. Cristoforetti, F. Di Renzo and L. Scorzato, New approach to the sign problem in quantum
field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506
[1205.3996]

[3] M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Monte Carlo simulations on the
Lefschetz thimble: Taming the sign problem, Phys. Rev. D 88 (2013) 051501 [1303.7204]

[4] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, Hybrid Monte Carlo on
Lefschetz thimbles - A study of the residual sign problem, JHEP 1310 (2013) 147 [1309.4371]

[5] H. Fujii, S. Kamata and Y. Kikukawa, Lefschetz thimble structure in one-dimensional lat-
tice Thirring model at finite density, JHEP 11 (2015) 078 [erratum: JHEP 02 (2016) 036]
[1509.08176]

[6] H. Fujii, S. Kamata and Y. Kikukawa, Monte Carlo study of Lefschetz thimble structure in
one-dimensional Thirring model at finite density, JHEP 12 (2015) 125 [erratum: JHEP 09
(2016) 172] [1509.09141]

[7] A. Alexandru, G. Başar and P. Bedaque, Monte Carlo algorithm for simulating fermions on
Lefschetz thimbles, Phys. Rev. D 93 (2016) 014504 [1510.03258]

[8] A. Alexandru, G. Başar, P. F. Bedaque, G. W. Ridgway and N. C. Warrington, Sign problem and
Monte Carlo calculations beyond Lefschetz thimbles, JHEP 1605 (2016) 053 [1512.08764]

[9] M. Fukuma and N. Umeda, Parallel tempering algorithm for integration over Lefschetz thim-
bles, PTEP 2017 (2017) 073B01 [1703.00861]

[10] A. Alexandru, G. Başar, P. F. Bedaque and N. C. Warrington, Tempered transitions between
thimbles, Phys. Rev. D 96 (2017) 034513 [1703.02414]

[11] M. Fukuma, N. Matsumoto and N. Umeda, Applying the tempered Lefschetz thimble method
to the Hubbard model away from half filling, Phys. Rev. D 100 (2019) 114510 [1906.04243]

[12] A. Alexandru, Improved algorithms for generalized thimble method, talk at the 37th interna-
tional conference on lattice field theory, PoS LATTICE2019 (2019) 231.

[13] M. Fukuma, N. Matsumoto and N. Umeda, Implementation of the HMC algorithm on the
tempered Lefschetz thimble method, 1912.13303

[14] M. Fukuma and N. Matsumoto, Worldvolume approach to the tempered Lefschetz thimble
method, PTEP 2021 (2021) 023B08 [2012.08468]

[15] M. Fukuma, N. Matsumoto and Y. Namekawa, Statistical analysis method for the worldvolume
hybrid Monte Carlo algorithm, PTEP 2021 (2021) 123B02 [2107.06858]

9

https://doi.org/10.48550/arXiv.1001.2933
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.48550/arXiv.1205.3996
https://doi.org/10.1103/PhysRevD.88.051501
https://doi.org/10.48550/arXiv.1303.7204
https://doi.org/10.1007/JHEP10(2013)147
https://doi.org/10.48550/arXiv.1309.4371
https://doi.org/10.1007/JHEP02(2016)036
https://doi.org/10.1007/JHEP02(2016)036
https://doi.org/10.48550/arXiv.1509.08176
https://doi.org/10.1007/JHEP12(2015)125
https://doi.org/10.1007/JHEP09(2016)172
https://doi.org/10.1007/JHEP09(2016)172
https://doi.org/10.48550/arXiv.1509.09141
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.48550/arXiv.1510.03258
https://doi.org/10.1007/JHEP05(2016)053
https://doi.org/10.48550/arXiv.1512.08764
https://doi.org/10.1093/ptep/ptx081
https://doi.org/10.48550/arXiv.1703.00861
https://doi.org/10.1103/PhysRevD.96.034513
https://doi.org/10.48550/arXiv.1703.02414
https://doi.org/10.1103/PhysRevD.100.114510
https://doi.org/10.48550/arXiv.1906.04243
https://doi.org/10.22323/1.363.0231
https://doi.org/10.48550/arXiv.1912.13303
https://doi.org/10.1093/ptep/ptab010
https://doi.org/10.48550/arXiv.2012.08468
https://doi.org/10.1093/ptep/ptab133
https://doi.org/10.48550/arXiv.2107.06858


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
6
5

Extending the WV-HMC algorithm to group manifolds Masafumi Fukuma

[16] M. Fukuma, Simplified Algorithm for the Worldvolume HMC and the Generalized Thimble
HMC, PTEP 2024 (2024) 053B02 [2311.10663]

[17] M. Fukuma, Worldvolume Hybrid Monte Carlo algorithm for group manifolds, in preparation.

[18] H. C. Andersen, RATTLE: A “velocity” version of the SHAKE algorithm for molecular
dynamics calculations, J. Comput. Phys. 52 (1983) 24.

[19] B. J. Leimkuhler and R. D. Skeel, Symplectic numerical integrators in constrained Hamiltonian
systems, J. Comput. Phys. 112 (1994) 117.

10

https://doi.org/10.1093/ptep/ptae051
https://doi.org/10.48550/arXiv.2311.10663
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1006/jcph.1994.1085

	Introduction
	Cauchy's theorem
	Cauchy's theorem for flat spaces
	Cauchy's theorem for group manifolds

	WV-HMC for group manifolds
	Numerical test: one-site model
	G=SU(2) with pure imaginary coupling
	G=U(2) with a topological term

	Conclusion and outlook

