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Automated tuning for HMC mass ratios
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We extended previous work on tuning HMC parameters using gradient information to include
Hasenbusch mass ratios. The inclusion of mass ratios adds many more parameters that need to
be tuned, and also allows for lots of variations in the choice of integrator pattern. We investigate
the effectiveness of automatically tuning a large number of HMC parameters and compare the
optimally tuned versions over a range of integrator variants.
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Automated tuning for HMC mass ratios J.C. Osborn

While Hybrid Monte Carlo (HMC) [1] has been very successful in sampling gauge fields from
lattice gauge theory actions, efficient use of HMC can require tuning several simulation parameters
[2, 3]. Previously, we investigated using machine learning (ML) methods, in particular gradient-
based optimization, to automatically tune these parameters during sampling [4]. We found that
the gradient-based tuning was very effective in tuning the higher-order molecular dynamics (MD)
parameters used in HMC for a simple staggered fermion simulation. We now extend this work to
include tuning Hasenbusch mass ratios [5] used as a preconditioner for the MD evolution.

1. Mass Preconditioning

The staggered fermion determinant (with 4 continuum flavors) can be written in terms of a
pseudofermion (𝜙) action as��𝐷†𝐷 + 𝑚2�� = ∫

𝑑𝜙 𝑒𝜙
† [𝐷†𝐷+𝑚2 ]−1𝜙 , (1)

where 𝐷 = 𝐷𝑜𝑒 is the staggered Dirac matrix from even to odd sites (which depends on the gauge
field) and 𝑚 is the fermion mass. With mass preconditioning, the determinant can be written as��𝐷†𝐷 + 𝑚2�� = ��𝐷†𝐷 + 𝑚2
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with a set of 𝑛 tunable parameters, ℎ𝑖 . This gives a pseudofermion action of∫
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A careful choice of the ℎ𝑖’s can significantly reduce the fluctuations in the fermion force and allow
for a larger step size in the MD integrator. Here we investigate using the gradient of the full HMC
trajectory with respect to the ℎ𝑖’s to automatically tune these parameters towards their optimal
settings.

2. Evaluating HMC efficiency

As was done previosly [4], we model a set of 𝑁 HMC updates as a random walk due to the
momentum refresh, and define the effective MD integration time as

𝑇eff ≡ 𝜏
√︁
⟨𝑃𝑎⟩𝑁 (4)

where 𝜏 is the MD integration time for a single update and ⟨𝑃𝑎⟩ is the average acceptance probability.
This expression can then be solved for 𝑁 to get the effective number of update steps, 𝑁 (𝑇eff), needed
to go an effective MD time of 𝑇eff . The cost to evolve for an effective MD time 𝑇eff is then 𝑁 (𝑇eff)𝐶
where 𝐶 is the cost per update.

The cost per update would ideally come from measurements of the time for every update
operation (gauge update, force evaluations, etc.). For simplicity here, we assume the Dirac matrix
solver is dominant and only include that. The time for each solve is proportional to the number
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of iterations (𝑁𝐶𝐺), which for staggered fermions using conjugate gradient (CG), is approximately
proportional to the inverse of the mass. We have verified this approximation to be correct to within
15% accuracy for all the solves used in our study. We then model the relative cost of all the solves
in the HMC update (relative to a single solve at the dynamical mass) as

𝐶𝑆 =
∑︁
𝑠

𝑁𝐶𝐺 (𝑚𝑠)
𝑁𝐶𝐺 (𝑚) ≈

∑︁
𝑠

𝑚

𝑚𝑠

(5)

where 𝑚𝑠 is the mass in each solve, 𝑠, that occurs in the full HMC update (which may repeat the
dynamical or Hasenbusch masses some number of times).

Using 𝐶𝑆 as the cost per update and setting 𝑇eff = 1 we get for the cost function

Cost = 𝑁 (𝑇eff = 1)𝐶𝑆 =
𝐶𝑆

𝜏2⟨𝑃𝑎⟩
, (6)

Given this cost function, we now want to tune the parameters to minimize the cost. Due to the
average acceptance, ⟨𝑃𝑎⟩, appearing in the denominator, it is more convenient to work with the
inverse of the cost, so we instead minimize the loss function

Loss = − 1
Cost

= −⟨𝑃𝑎⟩𝜏2

𝐶𝑆

. (7)

The loss function is minimized with the Adam optimizer [6] using the gradient of the loss function,
which includes taking the gradient of the acceptance probability, 𝑃𝑎 = min[1, exp(−Δ𝐻)], with
Δ𝐻 the action difference between the end and start of the trajectory.

The gradient is taken with respect to the MD integration parameters and the Hasenbusch
masses, ℎ𝑖 . Much of this calculation proceeds similar to before [4]. One notable new piece here is
the need to take the gradient of the pseudofermion field, since the ℎ𝑖’s are used in the refresh. For
example, the pseudofermion 𝜙𝑘 in the action term∫

𝑑𝜙𝑘𝑒
𝜙
†
𝑘

𝐷†𝐷+ℎ2
𝑘+1

𝐷†𝐷+ℎ2
𝑘

𝜙𝑘

(8)

is generated from

𝜙𝑘 = 𝑃𝑒 (𝐷0 + ℎ𝑘+1)−1(𝐷0 + ℎ𝑘)𝜂𝑘 (9)

where 𝜂𝑘 is a Gaussian random field, 𝐷0 is the staggered Dirac operator using the gauge field from
the start of the trajectory, and 𝑃𝑒 is a projection onto even sites. The gradient of this expression
with respect to the Hasenbusch masses must be included everywhere the pseudofermions enter in
the update steps.

3. Integrators

Here we used four different MD integrator patterns. Two of the integrators, ABABA and
ABACABA, were tested previously [4]. Here A stands for an update of the gauge field, B for an
update of the momentum using both the gauge and fermion forces, and C is a force-gradient update
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(more details on that below). We introduce two more integrators, in order to reduce the number
of force evaluations from the pseudofermion actions. The new G5F2 integrator can be written in
a similar notation as AGABAGABAGA where G stands for a momentum update using only the
gauge force. This integrator has 5 gauge force evaluations and 2 fermion forces. We also consider a
variation of this, G5F2,3 which distinguishes the light mass fermion force (L), from the heavy one
(H), and can be written as AHALAHALAHA, where each of the fermion forces (H,L) also includes
the gauge force (though each with their own tunable coefficient).

The force-gradient update, denoted as C in our notation, uses a variation of the Hessian-free
force-gradient update step introduced in [7],

𝑈temp = 𝑒𝑎𝐹 (𝑈)𝑈 (10)
𝑝′ = 𝑝 + 𝑏𝐹 (𝑈temp) , (11)

where 𝐹 is a force and 𝑎, 𝑏 are parameters which are typically set analytically to cancel errors at a
given order. In our case we combine the gauge and fermion force updates together, but allow each
to have their own tunable coefficients

𝑈temp = 𝑒𝑎𝑔𝐹𝑔 (𝑈)+𝑎 𝑓 𝐹 𝑓 (𝑈)𝑈 (12)
𝑝′ = 𝑝 + 𝑏𝑔𝐹𝑔 (𝑈temp) + 𝑏 𝑓 𝐹 𝑓 (𝑈temp) , (13)

where 𝑔 ( 𝑓 ) denotes the gauge (fermion) coefficient and force term. This form is very flexible and
allows the gauge and fermion force updates to use different time scales within a single force-gradient
evaluation.

4. Numerical tests

We tested automated tuning of the HMC parameters using a plain staggered action (4 continuum
flavors) with mass 𝑚 = 0.04. The plaquette gauge action coupling was 𝛽 = 5.4 on a 123 ×24 lattice.
In all cases we started from a thermalized configuration and used 200 trajectories for tuning followed
by 400 trajectories for measurements. The MD trajectory length, 𝜏, and the improved MD integrator
parameters were always included in the tuning.

In Figure 1 we show the cost versus Hasenbusch mass for HMC with 𝑛𝑠 = 1 MD step and
one Hasenbusch mass, for a variety of MD integrators. The blue points are for fixed Hasenbusch
mass (hMass) while tuning MD parameters, and the red points include tuning hMass using different
hMass values as a starting point (with the starting value shown at the beginning of the grey line).

We see that in all cases, tuning hMass reliably ended near the minimum of the cost function.
In this case the best integrator was the force gradient (ABACABA).

In Figure 2 we show results for two Hasenbusch masses, again with 𝑛𝑠 = 1 MD step and using
the ABABA integrator. The left panel shows a 3D surface plot of the cost function with fixed h1
and h2 while tuning the MD parameters, and the right panel shows a contour plot of the same data.
Runs including tuning of h1 and h2 are also shown with the initial values for h1 and h2 in blue and
the final tuned values in red. In this case the minimum of the cost function is very shallow in the h2
direction. The gradient-based tuning was still able to find the minimum reasonably well.
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Figure 1: Cost function vs. Hasenbusch mass (hMass) for tuned HMC with 𝑛𝑠 = 1 MD step and one
Hasenbusch mass. Different MD integrators were used in each panel ABABA (upper left), G5F2 (upper
right), G5F2,3 (lower left), ABACABA (lower right). The blue points are for fixed hMass while tuning MD
parameters, and the red points include tuning hMass using different hMass values as a starting point (shown
at the beginning of the grey line).

Figure 2: Cost vs. Hasenbusch masses (h1, h2) for HMC with 𝑛𝑠 = 1 MD step, 2 Hasenbusch masses, and
the ABABA integrator. The left panel shows a 3D surface plot of the cost function with fixed h1 and h2 while
tuning the MD parameters, and the right panel shows a contour plot of the same data. Runs including tuning
of h1 and h2 are also shown with the initial values for h1 and h2 in blue and the final tuned values in red.
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Figure 3: Tuned values for runs with 1, 2 & 3 Hasenbusch masses vs. cost with 𝑛𝑠 = 1 step of ABABA
integrator. For each case, results from several tuning runs are shown.

In Figure 3 we show tuned values from runs with 1, 2 & 3 Hasenbusch Masses using 𝑛𝑠 = 1
step of the ABABA integrator. For each case, results from several tuning runs are shown. For one
Hasenbusch mass (red points), we see that the mass is fairly well constrained, though there is about
a 10% spread in the cost values due to statistical fluctuations. For two Hasenbusch masses (blue
points), the cost is much smaller than for one mass. Here ℎ1 is relatively well determined, similar to
the one mass case, but ℎ2 has a large spread. For three Hasenbusch masses (green points), the cost
is only slightly lower than for two masses. The value for ℎ1 is similar to the two mass case. The
values for ℎ2 and ℎ3 seem to split the range of ℎ2 values from the two mass case into two groups,
with ℎ3 extending the range up a bit. For the ensemble studied here, there isn’t much benefit to
having more than two Hasenbusch masses. We would need to go to a larger, lighter mass ensemble
to explore tuning with more masses.

In Figure 4 we show the dependence of the tuned values for two Hasenbusch masses on the
number of MD steps using the ABABA integrator. As in the right panel of Figure 2, we show the
contours of the cost function at fixed Hasenbusch masses while tuning the MD parameters, along
with the ending mass values (in red) for runs including tuning of the masses with different starting
points (in blue). Moving from 𝑛𝑠 = 1 to 𝑛𝑠 = 2 to 𝑛𝑠 = 4 we see a trend of the cost minimum
moving to larger values of ℎ1 and ℎ2. In these cases the tuning was able to reliably move towards
the minimum, though for some starting points, it seems to have not converged to a minimum value
yet. At 𝑛𝑠 = 8 the minimum seems to be shallower and is influenced by large statistical fluctuations.
Due to the shallow and noisy minimum, the tuning wasn’t as effective here.

In Figure 5 we show the tuned cost vs. trajectory length for increasing number of MD steps
for the ABABA and force gradient (ABACABA) integrators. The cost per update trajectory, 𝐶𝑆 , is
proportional to the number of MD steps, 𝑛𝑠 = 𝜏/𝜖 . This gives for the cost

Cost =
𝐶𝑆

⟨𝑃𝑎⟩𝜏2 ∝ 1
⟨𝑃𝑎⟩𝜖𝜏

(14)

If 𝜖 were held fixed, then the ideal scaling for the cost would be 𝜏−1. The acceptance will, however,
decrease for increasing 𝜏 which will reduce the scaling, and also the optimized value of 𝜖 will vary
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Figure 4: Dependence of the tuned values for two Hasenbusch masses on the number of MD steps
(nSteps ≡ 𝑛𝑠 = 1, 2, 4, 8) using the ABABA integrator. The 𝑛𝑠 = 1, 2, 4 plots show a trend of the cost
minimum to move to larger ℎ1 and ℎ2 as 𝑛𝑠 is increased. The 𝑛𝑠 = 8 plot seems to have a shallower minimum
and is likely influenced by large statistical fluctuations.

Figure 5: Tuned Cost vs. trajectory length for increasing number of steps. The blue line is a power-law fit
to the ABABA integrator points with −0.83 as the fit value of the power. The red line is a power-law fit to
the force-gradient (ABACABA) integrator points with −0.90 as the fit value.
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some too. We find for the ABABA integrator, Cost ∝ 𝜏−0.83 while for ABACABA, Cost ∝ 𝜏−0.90.
Of course, the usefulness of increasing 𝜏 is decreased as it approaches the auto-correlation

time for the observables of interest. This effect is not currently modeled in our cost function and
we plan to consider that in future studies.

5. Summary

We found that one can effectively perform automated tuning of HMC parameters, including
Hasenbusch mass ratios, using gradient-based optimization techniques. The automated tuning
worked well for four-flavor staggered HMC with a variety of MD integrators and for up to three
Hasenbusch masses, which was the largest feasible with the lattice size used. We found that the
tuning also worked well as the number of MD steps was increased up to 𝑛𝑠 = 4, though at 𝑛𝑠 = 8
the minimum surface of the cost function seemed very noisy, and thus the autotuning didn’t work
as well. This requires further study to determine if it is simply a matter of requiring more statistics.

Overall, the autotuning method presented provides a convenient way to optimize HMC param-
eters. To continue this work, we are planning to extend the method to other types of HMC actions
(improved gauge, quark smearing, RHMC) and test on production ensembles. We also plan to
improve modeling of the cost estimate to include the full HMC costs and observable autocorrelation
times.
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