
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation

Leon Hostetler,𝑎,∗ M. A. Clark,𝑏 Carleton DeTar,𝑐 Steven Gottlieb𝑎 and Evan
Weinberg𝑏

𝑎Department of Physics, Indiana University,
Bloomington, Indiana 47405, USA

𝑏NVIDIA Corporation,
Santa Clara, California 95051, USA

𝑐Department of Physics & Astronomy, The University of Utah,
Salt Lake City, Utah 84112, USA
E-mail: leonhost@iu.edu, mclark@nvidia.com, detar@physics.utah.edu,
sg@iu.edu, eweinberg@nvidia.com

Typically, the conjugate gradient (CG) algorithm employs mixed precision and even-odd precon-
ditioning to compute propagators for highly improved staggered quarks (HISQ). This approach
suffers from critical slowing down as the light quark mass is decreased to its physical value. Multi-
grid is one alternative to combat critical slowing down; however, it involves setup costs that are not
always easy to amortize. We consider deflation, which can also remove critical slowing down, but
incurs its own setup cost to compute eigenvectors. Results using the MILC and QUDA software
libraries to generate eigenvectors and to perform deflated solves on lattices up to 1443 × 288 (with
lattice spacing 0.04 fm) and with a range of quark masses from the physical strange down to the
physical light quark values will be presented. We compare with CG and comment on deflation
versus multigrid.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:leonhost@iu.edu
mailto:mclark@nvidia.com
mailto:detar@physics.utah.edu
mailto:sg@iu.edu
mailto:eweinberg@nvidia.com
https://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

1. Introduction
In lattice QCD calculations, solving the Dirac equation is the dominant computational bottle-

neck since it has to be done repeatedly both in the hybrid Monte Carlo algorithm used to generate
configurations and in the propagator solves used to compute correlators. The solves are typically
done using an iterative Krylov subspace method such as the conjugate gradient (CG) algorithm,
and the computational effort required is dependent on the condition number of the system. To
get more precise results from lattice QCD, we are driven to use finer lattices. However, as our
lattice spacing becomes finer, the bare light quark mass corresponding to physical hadrons becomes
smaller, and since the smallest eigenvalue of the Dirac matrix is essentially the quark mass, we end
up confronting a diverging condition number. This is the problem of “critical slowing down,” and
it hits us at both ends—configuration generation and propagator solves—of the typical lattice QCD
calculation.

One approach is to use eigenvector deflation [1–4], which solves for the low modes exactly,
leaving the CG solver to work on the easier high mode part of the solution. Deflation does not
eliminate critical slowing down, but only shifts it from the CG solve to the eigensolve. Nonetheless,
in common lattice QCD workflows, this can be very beneficial. Multi-grid (MG) algorithms are
another approach, and they work well to eliminate critical slowing down for Wilson [5–7], twisted
mass [8, 9], and domain wall [10–12] fermions. An efficient MG method for staggered fermions
has been more elusive, however, significant recent progress has been made using a Kähler-Dirac
preconditioned MG algorithm [13, 14].

The cost of computing an eigenvector is proportional to the lattice volume 𝑉 , and because
the density of low modes increases with volume, the number of eigenvectors needed for deflation
scales with the volume. Because of the 𝑉2 cost of deflation, it is not a long-term solution for
lattice QCD. In the long run, MG methods will be needed to truly eliminate critical slowing down.
For propagator solves with highly-improved staggered quarks (HISQ) using current state of the art
algorithms, it is not clear whether MG or deflated CG performs better on current lattices. This is
largely due to limited numerical results in the literature for HISQ deflation performance [3] and
none for the largest lattice sizes in use. This is the gap that the present work attempts to fill. We
use the MILC and QUDA [15, 16] software libraries to investigate the performance of deflated CG
for a range of quark masses and lattice sizes.

2. Critical Slowing Down in HISQ Propagator Solves
The conventional approach to compute HISQ propagators is to use a mixed precision CG

algorithm. Typically, this is even-odd preconditioned CG—without deflation—performed on the
normal equations. Quark propagators 𝜓 are computed by solving the linear equation 𝑀𝜓 = 𝜂,
where 𝜂 is a source field, 𝑀 ≡ /𝐷 + 2𝑚, 𝐷 is the anti-Hermitian HISQ Dirac matrix, and the factor
of 2 in front of the bare quark mass 𝑚 is a historical MILC convention. The CG algorithm, in
its original form, works only for positive definite systems. The HISQ operator 𝑀 is not positive
definite, but the squared operator 𝑀†𝑀 is, so in practice, we solve the normal equation

𝑀†𝑀𝜓 = 𝑀†𝜂. (1)

Then 𝜓 = (𝑀†𝑀)−1𝑀†𝜂 = 𝑀−1𝜂. In the following, we will refer to the conventional even-odd
preconditioned conjugate gradient approach simply as “CG”, and it will be the baseline we use for

2

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

lattice ∼ 𝑎 physical size 𝑎𝑚ℓ 𝑎𝑚𝑠 𝜖𝑚𝑖𝑛 𝜅

483 × 64 0.12 5.76 fm 0.001907 0.05252 2.4 × 10−10 1.6 × 106

643 × 96 0.09 5.76 fm 0.001200 0.03630 4.1 × 10−10 4.0 × 106

963 × 192 0.06 5.76 fm 0.000800 0.02200 9.9 × 10−11 9.0 × 106

1443 × 288 0.04 5.76 fm 0.000569 0.01555 1.4 × 10−11 1.8 × 107

Table 1: Details of the ensembles used in this study—the lattice size, approximate lattice spacing 𝑎, physical
spatial extent of the lattice, the physical light quark mass, the strange quark mass, the smallest eigenvalue of
the massless operator /𝐷† /𝐷 for the particular configuration studied, and the approximate condition number
of the massive operator 𝑀†𝑀 at the physical light quark mass.

performance comparison with deflated CG.
The number of CG iterations needed to reach the solution (throughout this article, the stopping

criterion is a true residual < 10−8) depends on the condition number

𝜅 =
𝜆𝑚𝑎𝑥

𝜆min
, (2)

of the system being solved. Here 𝜆 are the eigenvalues of the squared massive operator 𝑀†𝑀 .
Empirically, we find 𝜆𝑚𝑎𝑥 ≈ 23 for HISQ. The smallest eigenvalue of the squared massive operator
is

𝜆𝑚𝑖𝑛 = 𝜖𝑚𝑖𝑛 + (2𝑎𝑚𝑞)2, (3)

where 𝜖𝑚𝑖𝑛 is the smallest eigenvalue of the squared massless operator /𝐷† /𝐷. Since 𝜖𝑚𝑖𝑛 ≈ 0, the
condition number and the number of CG iterations diverge as the quark mass 𝑎𝑚𝑞 is decreased.

The ensemble parameters used in this study are detailed in Table 1. The first columns
give the lattice size, the approximate lattice spacing 𝑎, the physical spatial extent of the lat-
tice, the bare light quark mass corresponding to physical pions, and the strange quark mass.
The column 𝜖𝑚𝑖𝑛 gives the smallest eigenvalue of the massless operator /𝐷† /𝐷 as reported by the
staggered_eigensolve_test application from QUDA, and 𝜅 gives the approximate condition
number of the operator 𝑀†𝑀 . Notice that the ensembles approach the continuum limit in lattice
spacing at fixed physical volume of 5.76 fm.

Critical slowing down can be visualized by plotting the number of CG iterations required to
reach the solution as a function of the bare quark mass. See the left panel in Fig. 1, and note the
log scale on the vertical axis. Here it takes approximately thirty times more work to compute a
light quark propagator than it does to compute a heavy quark propagator. Notice that the curves
are roughly independent of the lattice size. As shown in the right panel of Fig. 1, the smallest
eigenvalues 𝜖𝑚𝑖𝑛 of /𝐷† /𝐷 range from about 10−11 to 10−9 for the different lattice sizes considered.
So 𝜖𝑚𝑖𝑛 ≈ 0, which implies the condition number 𝜅 ≈ 23/(2𝑎𝑚𝑞)2 approximately depends only on
the quark mass (and not on the lattice size). What does change with lattice size is the value of the
bare quark mass needed to produce hadrons at the physical point. As we go to finer lattices, the
physical light quark mass 𝑎𝑚ℓ, 𝑝ℎ𝑦𝑠 gets smaller, and the condition number worsens.

For these experiments, eigenvectors of the massless squared Dirac operator /𝐷† /𝐷 are generated
using the thick restarted Lanczos algorithm via QUDA’s staggered_eigensolve_test appli-
cation. Propagators 𝜓 are computed by solving Eq. (1) using MILC’s ks_spectrum application

3

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

103

104

105

0 0.003 0.006 0.009 0.012 0.015

C
G

It
er
at
io
n
s

amq

483 × 64
643 × 96
963 × 192
1443 × 288

Even-odd Preconditioned CG

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

1 10 100 1000

ϵ

Eigenvalue number

483 × 64
643 × 96
963 × 192
1443 × 288

Smallest Eigenvalues of /D
† /D

Figure 1: (Left) The number of CG iterations required to reach the solution versus the bare quark mass
for several lattice sizes. (Right) The smallest eigenvalues of the squared massless Dirac operator /𝐷† /𝐷 for
several lattice sizes. The ensembles approach the continuum limit in lattice spacing at fixed physical volume.

with the deflation and CG offloaded to QUDA’s solver. In MILC, even-odd preconditioning (Schur
decomposition) is performed 𝑦 = 𝑀†𝜂, and then the even site source 𝑦𝑒 is passed to QUDA, which
performs the CG solve and returns the even-site solution 𝜓𝑒 = (𝑀†𝑀)−1𝑦𝑒. The odd site solution
𝜓𝑜 = 𝑚(𝐷𝑜𝑒𝜓𝑒 + 𝜂𝑜)/2 is reconstructed in MILC and passed to the QUDA solver which polishes
it using one or more CG iterations 𝜓𝑜 = (𝑀†𝑀)−1𝑦𝑜. This procedure is repeated for each of the
three color charges.

The eigenvectors 𝑣𝑖 corresponding to the smallest eigenvalues are projected onto the source
vector

𝑥 =
∑︁
𝑖

𝑣𝑖
1
𝜆𝑖
𝑣
†
𝑖
𝜂. (4)

Then a deflated CG algorithm is effectively achieved by passing 𝑥 as the initial guess to the CG
solver. Then the solver only has to deal with the high modes which converge more quickly.
The critical slowing down is effectively shifted from the CG solve to the eigensolve, and so the
penalty is paid only once per gauge configuration instead of once per solve. Thus, deflation may
be advantageous in the (fairly common) situation in which many propagators are computed for
each gauge configuration—allowing the eigensolve cost to be amortized over a large number of
propagator solves. We target that situation here by focusing only on the solve time and assuming
that the eigensolve cost is made relatively negligible by the number of solves done per configuration.

3. Multi-deflation with Sloppy Eigenvectors
The size of eigenvectors is a significant disadvantage for the deflation method in terms of the

disk space needed to store them, the memory needed during generation and deflation, and even
the IO time1 spent reading the eigenvectors. Naively, the size of double precision eigenvectors is
𝑉 × 𝑁 × 48 bytes, where 𝑉 is the size of the lattice, and 𝑁 is the number of eigenvectors. For

1The IO time can be significantly reduced by using PARTFILE format for the eigenvectors such that each MPI rank
reads and writes to its own file.

4

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 5000 10000 15000

re
si
d
u
al

CG iteration

Double Prec.
Single Prec.

Example: 643 × 96 with amq = 0.000569

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 5000 10000 15000

re
si
d
u
al

CG iteration

δtr = 10−3

δtr = 10−4

δtr = 10−5

δtr = 10−6

Example: 643 × 96 with amq = 0.000569

Figure 2: (Left) The iterated residual versus CG iteration number for (a single) deflation on a 643 × 96
lattice with 2048 eigenvectors and at a lighter-than-physical quark mass of 0.000569. The black curve shows
the result when using double precision eigenvectors, and the red curve shows the result when using single
precision eigenvectors. In the double precision case, the residual reaches 10−8 in 708 CG iterations, whereas
in the single precision case, the solve stalls, and it takes >> 15, 000 iterations to reach the same residual.
(Right) Now with multi-deflation using only single precision eigenvectors. Redeflation is triggered whenever
the residual drops by a factor of 1/𝛿𝑡𝑟 . In this example, the number of CG iterations needed to reduce the
residual to 10−8 is 755, 12804, 14305, and 18621 for 𝛿𝑡𝑟 = 10−3, 10−4, 10−5, and 10−6 respectively. The key
point is that by using single precision eigenvectors, one can achieve performance similar to double precision
by redeflating whenever the residual drops by some empirically chosen factor.

2K eigenvectors of a 1443 × 288 lattice, this comes to more than 80 TB. However, with single
parity format2, there is no need to ever compute or store the odd part of the eigenvectors, so the
size can immediately be halved. This reduces the 1443 × 288 eigenvectors to 40 TB. Another
factor of two can be gained by using single precision eigenvectors—reducing the size to 20 TB per
gauge configuration. However, as we see in the left panel of Fig. 2, using “sloppy” single precision
eigenvectors has a detrimental stalling effect on deflation.

In QUDA’s solver, a “reliable update” [15] is triggered when the residual drops by a factor
of 1/𝛿𝑟𝑑 since the last reliable update. During a reliable update the iterated residual is replaced
by the true residual in a process that corrects the residual without doing a full restart of the CG.
In our case, we used 𝛿𝑟𝑑 = 0.1 (this is reliable_delta=0.1 in QUDA), so a reliable update is
performed whenever the residual drops by a factor of 10. To combat the problem of the residual
stalling with sloppy eigenvectors, we experimented with periodically re-deflating the system during
the CG solve. A redeflate was triggered whenever the residual dropped by a factor of 1/𝛿𝑡𝑟 since
the last deflation. As shown in the right panel of Fig. 2, for the 643 × 96 lattice, with 𝛿𝑡𝑟 = 10−3

(this is tol_restart=1e-3 in QUDA) we were able to eliminate the stalling effect and achieve an
iteration count similar to that with double precision eigenvectors. In this figure, the blue residual
curve (which behaves very similarly to the residual curve in the double precision case), is obtained
with an initial deflation before the CG, followed by a secondary deflation when the residual drops
to 10−3, and a tertiary deflation when the residual drops to 10−6. The choice of 𝛿𝑡𝑟 was made
empirically and varied a little with lattice size. A similar multi-deflation approach for handling

2See, e.g., Eq. (6) and related text in Ref. [3] .

5

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

𝑚𝑞 = 𝑚𝑠 𝑚𝑞 = 𝑚ℓ

lattice EVs iters time (s) speedup iters time (s) speedup
483 × 64 0 372 0.59 — 11340 12.4 —
483 × 64 512 364 0.49 1.2 2030 2.70 4.6
483 × 64 1024 347 0.60 0.98 988 1.18 10.5
643 × 96 0 530 0.71 — 17468 20.7 —
643 × 96 1024 490 1.21 0.59 1351 2.27 9.1
643 × 96 2048 422 0.89 0.80 704 1.42 14.6
963 × 192 0 879 1.36 — 25921 39.3 —
963 × 192 1024 827 1.57 0.87 2774 5.48 7.2
963 × 192 2048 730 1.77 0.77 1382 3.98 9.9
1443 × 288 0 1156 1.64 — 33003 47.8 —
1443 × 288 1024 1123 1.67 0.98 5593 8.72 5.5
1443 × 288 2048 1058 1.77 0.93 2909 4.79 10.0

Table 2: Performance data from Perlmutter for solves at the strange quark mass 𝑚𝑠 and the light quark mass
𝑚ℓ on four different lattice sizes and with different numbers of eigenvectors (EVs) for the deflation. For both
quark masses, the number of CG iterations (iters) and the time to solution averaged over multiple solves are
given. Speedups are calculated relative to the undeflated case with EVs = 0.

approximate eigenvectors was used in Ref. [17]. We found the cost of doing a few additional
deflations to be relatively small. The primary benefit of the multi-deflation method is the memory
footprint reduction achieved by working with single instead of double precision eigenvectors, which
allows the problem to be solved in roughly the same amount of time on half as many nodes. Since
fewer nodes means less communication, there is also a minor but real speedup of the solver kernels.

To test the performance of multi-deflation with sloppy eigenvectors, we did runs with six solves
(2 propagators× 3 colors) with a CG stopping criterion of |𝑟 |/|𝑏 | < 10−8, where 𝑟 is the residual and
𝑏 is the source vector. We noted the CG iterations and the solve time. The first solve is slower due to
various setups and memory allocations, so we took the average of the last five solves when reporting
the time to solution. This was repeated for various bare quark masses, lattice sizes, and numbers
of eigenvectors used in the deflation. During the conference, we showed performance results from
experiments which were performed on Frontier. However, we have since noticed a performance
regression on Frontier where a large memory operation (e.g., computing the eigenvalues from 2K
eigenvectors) caused subsequent MPI_Allreduce calls to run significantly slower. The result was
a significant performance penalty for deflation. We did not see this issue on Perlmutter, hence, in
these proceedings we show updated performance results taken on Perlmutter. Performance data for
solves at the strange and light quark masses are given in Table 2 for different lattice sizes and using
different numbers of eigenvectors (EVs) for the deflation. For both quark masses, the number of
CG iterations (iters) and the time to solution averaged over multiple solves are given. Speedups are
calculated relative to the undeflated case with EVs = 0. The results show that deflated CG typically
performs worse at the strange quark mass but shows significant speedups at the light quark mass.
For the largest lattice, more detailed results are shown in Fig. 3. The left panel in the figure plots the
CG iterations versus bare quark mass for conventional (undeflated) CG and for deflated CG using

6

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

103

104

105

0 0.003 0.006 0.009 0.012 0.015

amℓ,phys

C
G

it
er
at
io
n
s

amq

No deflation
1024 EVs
2048 EVs

Perlmutter: 1443 × 288, 384 nodes (1536 ranks)

100

101

102

0 0.003 0.006 0.009 0.012 0.015

amℓ,phys

S
ol
ve

T
im

e
(s
ec
)

amq

No deflation
1024 EVs
2048 EVs

Perlmutter: 1443 × 288, 384 nodes (1536 ranks)

Figure 3: (Left) CG iterations versus bare quark mass for the 1443 × 288 system running on 1536 GPUs
on Perlmutter. At the physical light quark mass 𝑎𝑚ℓ, 𝑝ℎ𝑦𝑠 , the undeflated case required on average 33,003
iterations per solve versus 2,909 for deflation with 2K eigenvectors. This implies a potential speedup of∼ 11×
for the deflated case. (Right) Solve time versus bare quark mass for the same cases. At 𝑎𝑚ℓ, 𝑝ℎ𝑦𝑠 , the average
solve time was 47.8s for the undeflated case versus 4.79s for the deflated case with 2K eigenvectors—an
actual solve time speedup of 10x.

1024 and 2048 eigenvectors. At the physical light quark mass 𝑎𝑚ℓ, 𝑝ℎ𝑦𝑠 = 0.000569, the undeflated
case required an average of 33,003 iterations per solve in order to reach a residual < 10−8 on each of
the six solves. For the deflated case with 2048 eigenvectors, it only required 2,909 iterations. This
ratio implies a potential speedup of about 11× for deflation with 2048 eigenvectors. In this example,
the slope shows that critical slowing down is not completely eliminated even when deflating with
2048 eigenvectors. The performance could be improved by increasing the number of eigenvectors,
but this would, of course, require running the problem on even more nodes. In the right panel of the
figure, we show the average time to solution for the six propagator solves. This excludes setup times
such as the eigensolve, loading the eigenvectors from disk, allocating memory, etc. At 𝑎𝑚ℓ, 𝑝ℎ𝑦𝑠,
the average solve time was 47.8s for the undeflated case versus 4.79s for the deflated case with 2048
eigenvectors—an actual solve time speedup of 10×.

For the comparison shown in Fig. 3, and for a given lattice size listed in Table 2, all three cases
were run on the same resources. For the 1443 × 288 lattice, we used 384 Perlmutter nodes (1536
NVIDIA A100 GPUs each with 40 GB of memory). The memory-intensive deflated case with 2048
eigenvectors dictated the resources needed for this job. The less intensive 1024-eigenvector case
could be run on about half as many nodes, and the undeflated case could run on many fewer nodes.
Given that increasing the number of nodes introduces additional communication overhead, one
could argue that this is an unfair representation of the relative cost in particular for the undeflated
case. In addition to considering the speedup given identical resources, as in Table 2 and Fig. 3, it
may be useful to consider also the cost efficiency as determined by minimizing the node-seconds
per solve. With 384 Perlmutter nodes, the undeflated case used 18,355 node-seconds per solve at
the light quark mass, and deflation with 2048 eigenvectors used 1839 node-seconds per solve. The
undeflated case, requiring much less memory, was run on as few as 27 nodes where it used 7914

7

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

node-seconds per solve—much more cost efficient than running undeflated on 384 nodes, but still
more than a factor of 4 less cost efficient than using deflation.

4. Summary and Outlook
Critical slowing down, the phenomenon in which the condition number of the Dirac operator

diverges as the quark mass goes to zero, is a significant bottleneck for lattice QCD calculations.
Eigenvector deflation and multi-grid (MG) methods are two ways in which critical slowing down can
be mitigated or eliminated. In these proceedings, we present results of our numerical experiments
using deflation for propagator solves for highly improved staggered quarks (HISQ) using the MILC
and QUDA software libraries. A primary motivation was to establish a baseline for comparison
with HISQ MG experiments. We show a factor of 10 speedup of the time to solution on the
1443 × 288 lattice at the physical light quark mass over conventional even-odd preconditioned
conjugate gradient (CG) by using deflation with 2048 eigenvectors. This speedup is comparable to
recent results using MG preconditioned GCR [14], where they also reported a 10× speedup for the
same quark mass and lattice size. We also show that single (instead of the usual double) precision
eigenvectors can be used, which halves the disk space and memory footprints, provided that the
system is periodically re-deflated during the solve.

Further improvements are expected to come from performing the deflation on multiple right-
hand sides concurrently during a batched solve, which would increase the arithmetic intensity and
give greater floating point throughput. That functionality, which is now present in QUDA [18, 19],
is being actively pursued for deflation. Optimizing the eigensolve by, e.g., using block TRLM and
the disk usage by, e.g., using eigenvector compression [20], are also being pursued. Finally, we
are continuing to improve the HISQ MG algorithm present in QUDA, including recent work on
multiple right-hand-side support. The full set of above-mentioned work, including an investigation
of both setup and solver times, will enable a robust comparison between deflation and MG methods
for real lattice QCD workflows on modern exascale-ready ensembles.

Acknowledgments
L. H. thanks Peter Boyle and Michael Lynch for helpful discussions. L. H. was supported by

the SciDAC: H.E.P., LAB 22-2580 program under the U.S. Department of Energy, Office of Science
and by the National Science Foundation (NSF) under Grant No. 2139536. Early exploration for this
project was performed on computational resources provided by Michigan State University’s ICER.
Further development was done on resources provided by the OLCF under the ALCC program and
by NERSC under the ERCAP program. C. D. was supported by NSF grant PHY23-10571.

References
[1] P. de Forcrand, Progress on lattice QCD algorithms, Nucl. Phys. B Proc. Suppl. 47 (1996)

228.

[2] A. Stathopoulos and K. Orginos, Computing and deflating eigenvalues while solving multiple
right-hand side linear systems with an application to quantum chromodynamics, SIAM J. Sci.
Comput. 32 (2010) 439 [0707.0131].

8

https://doi.org/https://doi.org/10.1016/0920-5632(96)00047-3
https://doi.org/https://doi.org/10.1016/0920-5632(96)00047-3
https://doi.org/10.1137/080725532
https://doi.org/10.1137/080725532
https://arxiv.org/abs/0707.0131

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

[3] C. Davies, C. DeTar, C. McNeile and A. Vaquero, Numerical experiments using deflation
with the HISQ action, EPJ Web Conf. 175 (2018) 14016 [1710.07219].

[4] E. Romero, A. Stathopoulos and K. Orginos, Multigrid deflation for lattice QCD, J. Comp.
Phys. 409 (2020) 109356 [1909.12234].

[5] J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn and C. Rebbi, Adaptive multigrid
algorithm for lattice QCD, Phys. Rev. Lett. 100 (2008) 041601 [0707.4018].

[6] R. Babich, J. Brannick, R.C. Brower, M.A. Clark, T.A. Manteuffel, S.F. McCormick et al.,
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator, Phys. Rev. Lett. 105
(2010) 201602 [1005.3043].

[7] J.C. Osborn, R. Babich, J. Brannick, R.C. Brower, M.A. Clark, S.D. Cohen et al., Multigrid
solver for clover fermions, PoS LATTICE2010 (2010) 037 [1011.2775].

[8] A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, Adaptive aggregation-based
domain decomposition multigrid for the lattice Wilson–Dirac operator, SIAM J. Sci. Comput.
36 (2014) A1581 [1303.1377].

[9] D. Richtmann, N. Meyer and T. Wettig, MRHS multigrid solver for Wilson-clover fermions,
PoS LATTICE2022 (2023) 285 [2211.13719].

[10] S.D. Cohen, R.C. Brower, M.A. Clark and J.C. Osborn, Multigrid algorithms for
domain-wall fermions, PoS LATTICE2011 (2011) 030 [1205.2933].

[11] P.A. Boyle, Hierarchically deflated conjugate gradient, 1402.2585.

[12] R.C. Brower, M.A. Clark, E. Weinberg and D. Howarth, Multigrid for chiral lattice fermions:
Domain wall, Phys. Rev. D 102 (2020) 094517 [2004.07732].

[13] R.C. Brower, E. Weinberg, M.A. Clark and A. Strelchenko, Multigrid algorithm for
staggered lattice fermions, Phys. Rev. D 97 (2018) 114513 [1801.07823].

[14] V. Ayyar, E. Weinberg, R.C. Brower, M. Clark and M. Wagner, Optimizing staggered
multigrid for exascale performance, PoS LATTICE2022 (2023) 335 [2212.12559].

[15] M. Clark, R. Babich, K. Barros, R. Brower and C. Rebbi, Solving lattice QCD systems of
equations using mixed precision solvers on GPUs, Comp. Phys. Commun. 181 (2010) 1517
[0911.3191].

[16] R. Babich, M.A. Clark, B. Joó, G. Shi, R.C. Brower and S. Gottlieb, Scaling lattice QCD
beyond 100 GPUs, in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, p. 1–11, ACM, Nov., 2011, DOI
[1109.2935].

[17] A. Stathopoulos, A.M. Abdel-Rehim and K. Orginos, Deflation for inversion with multiple
right-hand sides in QCD, J. Phys. Conf. Ser. 180 (2009) 012073.

9

https://doi.org/10.1051/epjconf/201817514016
https://arxiv.org/abs/1710.07219
https://doi.org/10.1016/j.jcp.2020.109356
https://doi.org/10.1016/j.jcp.2020.109356
https://arxiv.org/abs/1909.12234
https://doi.org/10.1103/PhysRevLett.100.041601
https://arxiv.org/abs/0707.4018
https://doi.org/10.1103/PhysRevLett.105.201602
https://doi.org/10.1103/PhysRevLett.105.201602
https://arxiv.org/abs/1005.3043
https://doi.org/https://doi.org/10.22323/1.105.0037
https://arxiv.org/abs/1011.2775
https://doi.org/10.1137/130919507
https://doi.org/10.1137/130919507
https://arxiv.org/abs/1303.1377
https://doi.org/https://doi.org/10.22323/1.430.0285
https://arxiv.org/abs/2211.13719
https://doi.org/https://doi.org/10.22323/1.139.0030
https://arxiv.org/abs/1205.2933
https://arxiv.org/abs/1402.2585
https://doi.org/10.1103/PhysRevD.102.094517
https://arxiv.org/abs/2004.07732
https://doi.org/10.1103/PhysRevD.97.114513
https://arxiv.org/abs/1801.07823
https://doi.org/10.22323/1.430.0335
https://arxiv.org/abs/2212.12559
https://doi.org/10.1016/j.cpc.2010.05.002
https://arxiv.org/abs/0911.3191
https://doi.org/10.1145/2063384.2063478
https://arxiv.org/abs/1109.2935
https://doi.org/10.1088/1742-6596/180/1/012073

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
6

Improving HISQ propagator solves using deflation Leon Hostetler

[18] K. Clark, Rearchitecting QUDA for multi-RHS computations, PoS LATTICE2024 (2025)
282.

[19] E. Weinberg, QUDA-accelerated batched solvers for LQCD workflows, PoS LATTICE2024
(2025) 454.

[20] M.A. Clark, C. Jung and C. Lehner, Multi-grid Lanczos, EPJ Web Conf. 175 (2018) 14023
[1710.06884].

10

https://doi.org/10.1051/epjconf/201817514023
https://arxiv.org/abs/1710.06884

	Introduction
	Critical Slowing Down in HISQ Propagator Solves
	Multi-deflation with Sloppy Eigenvectors
	Summary and Outlook

