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The Riemannian Manifold HMC (RMHMC) is designed to tackle critical slowing down by utilizing
a rational function of the SU(3) gauge covariant laplace operator in place of the canonical mass
term in the HMC algorithm. The RMHMC has been demonstrated to be effective at increasing
the rate of change of long-distance modes. We present the results of the recent studies done to
tune the algorithm and improve its efficiency.
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1. Introduction
Decreasing the lattice spacing (𝑎) towards the continuum limit works to reduce systematic

errors in lattice QCD calculations as it allows for an improved approximation of the continuous
nature of the physics being studied. A reduction in the lattice spacing introduces an increased energy
scale, or shorter distance scale, which must now be taken into account. To properly accommodate
this new scale, a smaller time step is required in the integration scheme. While introducing a
smaller time step improves the accuracy, it consequently results in larger auto correlation times
due to the fact that the slower evolving low modes are now fluctuating even less rapidly with each
step. An increase in computation efforts is then required in order to control statistical errors. This
phenomenon of increased auto correlation times as the continuum limit is approached is referred to
as critical slowing down and causes significant challenges in lattice QCD calculations.

Fourier acceleration attempts to tackle the issue of critical slowing down by modifying the
mass term in the kinetic energy portion of the HMC Hamiltonian in such a way that results in
the low energy modes moving at increased molecular dynamic velocities. This is a procedure that
becomes more complex when applied to QCD because the theory is a local gauge theory, thus
making distinction between modes more challenging. The Riemannian manifold HMC (RMHMC)
originally developed by Duane and Pendleton [1], aims to achieve Fourier acceleration in QCD
while maintaining gauge invariance by replacing the mass term in a HMC with a function of the
SU(3) gauge-covariant Laplace operator. This can be effective because the eigenmodes of the theory
are approximately covariant Laplace eigenmodes [2].

The RMHMC has been proven to be successful in achieving Fourier acceleration in studies
conducted without [2] and with fermions [3]. Yet, due to its complexity, the RMHMC algorithm
has been found to be computationally expensive compared to the HMC algorithm. We present
the findings of initial studies done in efforts to tune this algorithm for optimized acceleration and
efficiency on a 4 flavor ensemble with physical quark masses, domain wall fermions, inverse lattice
spacing (1/𝑎) of 4.0 GeV, and a volume of 323x64, smaller than what would be used in production.

2. The RMHMC algorithm
The RMHMC algorithm achieves Fourier acceleration while maintaining gauge invariance

in QCD by writing the mass term in the kinetic energy Hamiltonian as a function of the SU(3)
gauge-covariant Laplace operator. The addition of a mass term that is dependent on the gauge
links creates an additional force of the form 𝐹 = 1

2 Tr{𝑝†𝜇 [𝜕𝑚−1/𝜕𝑈]𝑝𝜇}. We recover the original
desired distribution with the addition of an auxiliary field, 𝜙, with corresponding momenta, 𝜋,
which generates the required −1

2 Tr log |𝑚 [𝑈] | term in the action to cancel out this non-physical
force. Making the final RMHMC Hamiltonian used:

𝐻 = 𝑆𝐺 [𝑈] + 𝑆𝐹 [𝑈] + 1
2

∑︁
𝜇

[
𝑝†𝜇

1
𝑚 [𝑈] 𝑝𝜇 + 𝜋†𝜇𝑚 [𝑈]𝜋𝜇 + 𝜙2

𝜇

]
. (1)

Here 𝑚 [𝑈] denotes the mass term and 𝑆𝐺 [𝑈] and 𝑆𝐹 [𝑈] denote the gauge and fermion action,
respectively.

This mass term is then tuned in order to approximate the spectral dependence of the gauge
force. Because both the mass term and its inverse appear in the Hamiltonian, the ease with which
the two terms can be inverted must also be taken into account when tuning. We thus study choices
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for 𝑚 [𝑈] and 𝑚 [𝑈]−1 in the form of rational functions. Earlier studies of this method can be found
in [3].

We then follow the integration scheme of Sexton and Weingarten [4] where the Hamiltonian is
redefined in such a way that separates the Fermion action from the gauge action

𝐻 = 𝐻′ + 𝑆𝐹 [𝑈] (2)

𝐻′ = 𝑆𝐺 [𝑈] + 1
2

∑︁
𝜇

[
𝑝†𝜇

1
𝑚 [𝑈] 𝑝𝜇 + 𝜋†𝜇𝑚 [𝑈]𝜋𝜇 + 𝜙2

𝜇

]
. (3)

This procedure permits 𝑆𝐹 [𝑈] to be used in one integrator and then the elements of H’ in another
allowing for a longer time step to be used for the fermion force update. We choose 𝑇 to denote
some transition function that updates the coordinates or momentum and now write the integration
scheme as follows:

𝑇 (𝜏𝐻) ≈ 𝑇 (1
2
𝜏𝐻′)𝑇 (𝜏𝑆𝐹 [𝑈])𝑇 (1

2
𝜏𝐻′), (4)

where the inner integration scheme is

𝑇 (1
2
𝜏𝐻′) ≈

[𝑇 ( 1
4𝑛

𝜏
∑︁
𝜇

[𝑝†𝜇
1

2𝑚 [𝑈] 𝑝𝜇 + 1
2
𝜋†𝜇𝑚 [𝑈]𝜋𝜇 + 1

2
𝜙2
𝜇])𝑇 (

1
2𝑛

(𝜏𝑆𝐺 [𝑈]))

· 𝑇 ( 1
4𝑛

𝜏
∑︁
𝜇

[𝑝†𝜇
1

2𝑚 [𝑈] 𝑝𝜇 + 1
2
𝜋†𝜇𝑚 [𝑈]𝜋𝜇 + 1

2
𝜙2
𝜇])]𝑛.

(5)

Here n is a positive integer and 𝜏 is the integration step size.

3. Initial comparison of the RMHMC to the HMC
We start with an initial comparison of the most successful mass function demonstrated in the ini-

tial study of the RMHMC with fermions [3], (which hereafter will be referred to as "RMHMC_M1"),
to the traditional HMC. We probe the algorithm’s effectiveness in moving low modes by looking
at the change in the Wilson flowed energy for a short, fixed-length trajectory. Studying the change
in the Wilson flowed energy offers a more practical way of studying the success of attempted
Fourier acceleration than obtaining the auto correlation time since the magnitude of the change in
the Wilson flowed energy can be more easily determined than an auto correlation time. Note this
Wilson flowed energy should be sensitive to the theory at length scales on the order of the square
root of the Wilson flow time [5]. As our objective is to accelerate the motion of the low modes of
the theory while accurately evolving all modes, we study the change in the Wilson flowed energy at
a larger Wilson flow time to concentrate on the evolution of long-distance quantities.

When comparing the RMHMC to the HMC the total trajectory length for the HMC was set to
the standard length of 1 and the choice of 8 integration steps was made in aim of keeping the change
in the Hamiltonian, 𝛿𝐻, within the reasonable range of 0 to 1 for the anticipated accept-reject step.
The RMHMC trajectories typically contained fewer integration steps because of the limitations of
the job queues on Frontier. The step size for the RMHMC runs was chosen so that 𝛿𝐻 values
at the end of these trajectories were close to those of the HMC runs. (Note for the higher-order
Omelyan we used, 𝛿𝐻 can be changed with minor adjustments in step size.) Since the meaning of
molecular dynamics time is different between the HMC and RMHMC algorithms, when making
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comparisons we instead compare the number of integration steps. Each integration step involves a
single evaluation of the costly fermion-determinant force. It should also be noted that all trajectory
runs in this study were conducted in double precision on 8 nodes of Frontier.

Through a comparison of the average of the change in the Wilson flowed energy at a Wilson
flow time of 16 (referred to below as 𝛿𝐸 (16)) for 20 configurations we demonstrate how the original
RMHMC_M1 is more successful at changing long-distance observables than the usual HMC. Fig. 1
shows the same change in 𝛿𝐸 (16) takes only one-half the number of steps for the RMHMC.
Yet, when factoring in the extra computational cost of the RMHMC algorithm the benefits of the
RMHMC are diminished by its current inefficiency as the run for the HMC averaged ≈ 26.5 minutes
while the RMHMC took substantially longer with a run time average of ≈ 66.5 minutes.

Figure 1: Left panel: The 𝛿𝐸 (16) averaged over the same 20 independent initial configurations for the
RMHMC_M1 compared to the HMC with jackknife errors. Right panel: The ratios of the average 𝛿𝐸 (16)
for the RMHMC_M1 divided by the average 𝛿𝐸 (16) for the HMC for each integration step with jackknife
errors. The average |𝛿𝐻 | for the HMC was 0.660 and the average |𝛿𝐻 | for the RMHMC_M1 was 0.737.

4. Sampling of the auxiliary determinant
To better understand the factors contributing to the computational cost of the RMHMC, we

studied the sampling of the auxiliary determinant term.
From the Gaussian distribution of the gauge momentum in the RMHMC Hamiltonian defined

in Eq. (2), the average magnitude of the gauge-field momentum is going to scale with the square
root of the mass term. Consequently, the magnitude of the gauge velocity then scales with the
inverse of the square root of the mass term

⟨|𝑝 |⟩ ≈
√
𝑚 ⇒ ⟨|𝑣 |⟩ ≈ 1

√
𝑚
. (6)

We can study the sampling of the auxiliary determinant by introducing a tunable constant, 𝜆. The
RMHMC Hamiltonian would then be:

𝐻 = 𝑆𝐺 [𝑈] + 𝑆𝐹 [𝑈] + 1
2

∑︁
𝜇

[
𝑝†𝜇

𝜆

𝑚 [𝑈] 𝑝𝜇 + 𝜋†𝜇
𝑚 [𝑈]
𝜆

𝜋𝜇 + 𝜙2
𝜇

]
. (7)

Here the inconsequential choice to divide by 𝜆 was purely based on convenience when implementing
the algorithm. Dividing the input mass term by this arbitrary scaling factor of 𝜆 in the Hamiltonian
now results in the magnitude of the gauge-field velocity increasing by a factor of

√
𝜆

⟨|𝑝 |⟩ ≈
√
𝑚

√
𝜆

⇒ ⟨|𝑣 |⟩ ≈
√
𝜆

√
𝑚
. (8)
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To compensate for the change in the gauge-field velocity, the trajectory length is then multiplied
by a factor of 1√

𝜆
. This adjustment ensures nearly equivalent gauge-field trajectories are being

studied. For example, if the velocity of the gauge field is increased, we reduce the duration of the
evolution resulting in gauge trajectories of equivalent length in both the original and scaled cases.

The mass term associated with the auxiliary field is the inverse of that of the gauge field
resulting in the velocity of the auxiliary field, 𝑣𝐴, decreasing by a factor of 1√

𝜆

|𝑣𝐴|≈
√
𝑚 → |𝑣𝐴|≈

√
𝑚

√
𝜆
. (9)

This effect is not compensated but is instead enhanced by the manual change in the trajectory length.
By introducing 𝜆 we can now alter the amount of sampling done on the auxiliary determinant and
therefore have introduced a new tunable parameter.

We study the effects of sampling the auxiliary determinant by comparing the ratios of the
average 𝛿𝐸 (16) for the RMHMC_M1 with varying 𝜆 values divided by the average 𝛿𝐸 (16) for
the original RMHMC_M1. The ratios shown in Fig. 2 are all fairly close to one, demonstrating
that all 𝜆 choices, whether they increase or decrease the amount of sampling on the auxiliary
determinant, ultimately result in no notable difference on the RMHMC’s ability to change long-
distance observables. The most dramatic choice of 𝜆 demonstrates a ratio marginally larger than 1
for a larger number of integration steps, yet this also happens to be accompanied with larger errors
indicating that additional statistics would be helpful to sharpen the conclusion.

Figure 2: The ratios of the average 𝛿𝐸 (16) for the RMHMC_M1 for varying scaling factors to that of the
RMHMC_M1 for each integration step. The legend denotes the values of 𝜆. Here it can be seen that altering
the amount of sampling of the auxiliary determinant has little to no impact on the RMHMC’s performance
in changing the long-distance observables.

Originally the auxiliary fields and their conjugate momenta were both updated frequently since
they were in the lowest level of the Sexton and Weingarten integration scheme. Now that we have
shown that the frequency of sampling the auxiliary terms has little to no impact on the change
in the long-distance observables over the length of a trajectory, we can replace the auxiliary field
with the introduction of a pseudo-fermion-like stochastic Gaussian integral with a quadratic form
given by the mass matrix 𝑚. Since the evaluation of both the operators 𝑚 and 𝑚−1 is a substantial
part of the extra costs of the RMHMC algorithm, moving the evaluation of 𝑚 to the upper level of
Sexton-Weingarten scheme should be an important improvement.

We then test a version of the RMHMC in which the same mass function of RMHMC_M1
is used, but now the auxiliary fields were replaced with the pseudo-fermion field approach. The
version where the auxiliary fields are no longer dynamical is denoted with RMHMC_aux_ND. Fig. 3
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suggests that when comparing ratios of the average 𝛿𝐸 (16) for the RMHMC_aux_ND divided by
that of the original RMHMC, this change in strategy for evaluating the auxiliary determinant may
have decreased the acceleration of the evolution of 𝛿𝐸 (16). However, given the large statistical
errors in Fig. 3 and the studies reported above showing that the rate of sampling of the auxiliary
determinant had little effect on 𝛿𝐸 (16), we interpret Fig. 3 as showing a ratio consistent with one
at the 1.42 𝜎 level. This is clearly a test that requires more statistics to be definitive. The new
sampling method reduced the run time by ≈10 %. Note, the improved run time is slightly offset by
an increase in 𝛿𝐻. Thus, we will assume that no significant degradation in the algorithm resulted
from this change to a non-dynamical treatment of the auxiliary determinant and continue to use this
"enhancement" in the remainder of these proceedings.

Figure 3: The ratio of the average 𝛿𝐸 (16) for RMHMC_aux_ND divided by that of the RMHMC for each
integration step with jackknife errors. The average runtime for the RMHMC_aux_ND was approximately ≈
60 minutes, compared to the ≈ 66.5 minutes of that of the RMHMC. The average |𝛿𝐻 | of RMHMC_aux_ND
was 0.774 and 0.727 for RMHMC. The ratio for each integration step is within 1.42𝜎 to one, yet the large
error on the last two integration steps demonstrates that additional statistics are required.

5. Polynomial forms of the input mass
Originally we were studying versions of the RMHMC algorithm in which both the RMHMC

mass, 𝑚 [𝑈], and its inverse, 𝑚 [𝑈]−1 were evaluated as rational functions of the covariant Laplace
operator. This was done because both𝑚 [𝑈] and𝑚 [𝑈]−1 appeared symmetrically in the lowest level
of the Sexton-Weingarten integration scheme. In addition, rational functions provided a flexible
format to match the desired shape where the mass function of RMHMC_M1 had a shape based on
the gauge force density measured as a function of the spectrum of the Laplace operator [2, 3]. The
improvements made to the integration scheme described in the previous section break the symmetry
between the appearance of the functions 𝑚 [𝑈] and 𝑚 [𝑈]−1 and suggest that it is no longer in our
best interest for these two functions to be equally easy to invert. In efforts to improve computational
efficiency, we can utilize a Chebyshev polynomial approximation of one of the rational functions,
allowing for one of the input functions to be simplified. We will refer to this mass function as
RMHMC_M2. With utilization of a Chebyshev polynomial fit, we capture the desired shape while
also reducing the complexity of the input functions in hopes to improve efficiency as half of the
inversions are now less strenuous.

The ratio plot in Fig. 4 demonstrates how simplifying the input mass term results in changes
in 𝛿𝐸 (16) that are practically equivalent within error to the previously favored mass function
RMHMC_M1, while producing a 50% speed up.
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Figure 4: Left panel: Log plot of RMHMC_M2 and RMHMC_M1 versus the eigenvalue of the Laplace
operator. Right panel: The ratio of the average of the 𝛿𝐸 (16) of RMHMC_M2 divided by that of the
RMHMC_M1 at each integration step with jackknife errors. Both runs were conducted with the new treatment
of the auxiliary fields as discussed in the previous section. The average runtime for the RMHMC_M2 was
≈ 33 minutes, compared to ≈ 60 minutes of that of the RMHMC_M1. The average |𝛿𝐻 | for RMHMC_M2
was 0.735 and 0.774 for RMHMC_M1.

We can now compare the 𝛿𝐸 (16) for the RMHMC_M2 to that of the HMC and the original
RMHMC. Fig. 5 shows how RMHMC_M2 maintains the original RMHMC’s effectiveness in
changing long-distance observables within 1.57𝜎. The average runtime found in the RMHMC_M2
results demonstrates improved computational efficiency of the RMHMC allowing it to be more
competitive when compared to the HMC in computational effort. The substantial errors demonstrate
the necessity for additional statistics to better understand the scope of the RMHMC’s effectiveness.

Figure 5: Left panel: The averages of the 𝛿𝐸 (16) for the RMHMC_M2 compared to the HMC. Here the
average |𝛿𝐻 | for the HMC was 0.660 and 0.735 for the RMHMC_M2. The average run time for RMHMC_M2
was ≈ 33 minutes and the average runtime for the HMC was ≈ 26.5 minutes. Right panel: The ratios of the
average 𝛿𝐸 (16) for the RMHMC_M2 divided by the average 𝛿𝐸 (16) for the original RMHMC_M1, where
the auxiliary fields were dynamical, for each integration step with jackknife errors. The two versions of the
RMHMC agree within 1.57𝜎.

6. Summary and Discussion
Critical slowing down currently contributes greatly to the systematic errors challenging many

lattice calculations. The RMHMC has shown promising results in efforts to overcome critical
slowing down through achieving Fourier acceleration by introducing a mass term that is a function
of the SU(3) gauge-covariant Laplace operator. Here we explore strategies for reducing the run
time of the RMHMC algorithm on lattice configurations suitable except for their relatively small
323 × 64 volume for production runs.

We have suggested replacing the auxiliary fields in our original RMHMC formulation with
a Gaussian, pseudo-fermion-like evaluation of the auxiliary determinant as a possible avenue for

7
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reducing computational cost. Furthermore, it has been demonstrated that we can additionally reduce
the run time by simplifying the form of the hand tuned RMHMC mass and accompanying inverse
function. These two improvements together reduce the run time for a short trajectory from 60 to 33
minutes. In the right panel of Fig. 5 we show the ratio of 𝛿𝐸 (16) for the improved algorithm divided
by that for the original algorithm which shows a reduction in effectiveness at the 1.57 sigma level.
As discussed above, we believe that the actual ratio should be much closer to one but more statics
are needed to resolve this issue. For completeness in the left panel of Fig. 5 we show a similar ratio
comparing the effectiveness with that of the original HMC. As can be seen the 30% advantage of the
RMHMC shown in Fig. 1 has disappeared for these algorithmic improvements because of the loss
of effectiveness suggested in Fig. 3. It should be emphasized that all comparisons of acceleration
are shown as a function of the integration step size, a direct measure of computational effort in the
limit that the fermion force dominates. The 2× gain in execution time achieved with the methods
presented is for physical quark masses but an unrealistically small volume and it is not known how
this will change as the volume is increased. Furthermore, the errors observed in this work highlight
the need for substantial computational resources in production-scale algorithm development. It
should also be noted that additional statistics were added since the oral presentation.

The results of this study shown in Fig. 2 suggest that the auxiliary determinant can be updated
less frequently without negatively impacting the RMHMC. This result can be utilized to further
improve the algorithm’s efficiency by altering the integration scheme so that the auxiliary deter-
minant is on the highest Sexton and Weingarten level. This would lead to a substantial disparity
between the number of times the functions 𝑚 [𝑈] and 𝑚 [𝑈]−1 were evaluated (12x for our current
implementation). We could then further benefit by using the simpler polynomial form for 𝑚 [𝑈]−1

in the gauge-field kinetic energy which appears on the lowest level of the Sexton and Weingarten
integration scheme. This change would theoretically further improve the efficiency of the algo-
rithm as the evaluation of the function that is more costly would need to be done substantially less
frequently.

It should also be noted that the RMHMC algorithm utilized in this study is not an exact
algorithm as for finite time step it violates symplecticity [6]. However, we believe that the effect
of this violation is most likely inconsequential for the approximate studies reported here since in
earlier work as the RMHMC upheld the required ⟨𝑒−𝛿𝐻⟩ = 1 property of proper sampling and no
discrepancies have been observed between RMHMC and HMC results.
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