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1. Introduction

Lattice QCD simulations approaching the continuum limit encounter the critical slowing down
(CSD) phenomenon, increasing the computational effort required to produce independent config-
urations. This results from the fact that the dominant part of the QCD action is the discretized
Yang-Mills action which only couples nearby links, so that it takes many local updates for changes
to diffuse throughout the lattice and equilibrate long-distance fluctuations.

At the same time, the fermion term in the QCD action depends non-locally on gauge links and
is accommodated by the Hybrid Monte Carlo (HMC) algorithm [1], in which the non-local fermion
forces are applied in parallel to all gauge links in the lattice. While the fermion forces are much
weaker than the gauge forces, one might naturally expect that the presence of such non-local forces
in the HMC will result in changes diffusing more rapidly across the lattice, since the gauge links
instantaneously feel the force from long-distance fluctuations. Recent RBC/UKQCD investigations
into CSD seem to confirm that this is the case [2, 3]. Adopting a momentum space perspective in
which long-distance fluctuations correspond to low-momentum wave modes, these investigations
reveal that the density of forces from the fermion determinant are flat across the spectrum of the
gauge-covariant Laplace operator, and even show a slight reverse-CSD behavior, see Figures 3 and
4 in Ref. [3].

This evidence suggests that an algorithm which adds non-local forces to the molecular dynamics
with greater magnitude than the fermion force may help to diffuse changes more rapidly across
the lattice and thereby reduce CSD. In these proceedings we discuss such an algorithm based
on a generalization of Hamiltonian dynamics often referred to as Nambu mechanics [4]. In
this formalism, a mechanical body is described by an 𝑛−dimensional canonical multiplet, whose
dynamics is described by 𝑛 − 1 Hamiltonian functions. The 𝑛 = 2 case is the familiar Hamiltonian
dynamics. We focus on the 𝑛 = 3 version, though the idea is applicable to any 𝑛. In this case, a
dynamical body is described by a canonical triplet (𝑝, 𝑞, 𝑟) whose time evolution is dictated by the
Hamiltonians (𝐻,𝐺). The main idea is that one of the functions 𝐻 (𝑝, 𝑞, 𝑟) enters the Metropolis
accept/reject step and the auxiliary Hamiltonian 𝐺 (𝑝, 𝑞, 𝑟) is chosen to contain non-local functions
of the gauge links, the forces from which enter the MD. These long-distance functions might be
chosen to be the relevant degrees of freedom in the continuum limit, and we hope that including
these forces provides the global communication required to reduce CSD.

The layout of this talk is as follows: Section 2 describes Nambu mechanics. Section 3 shows
how the path integral may be evaluated using a classical Nambu mechanics system. In Section 4,
we describe the application to lattice gauge theory. Numerical demonstrations are given in Section
5. Section 6 provides a further discussion of the algorithm.

2. Nambu mechanics

First we describe Nambu mechanics, emphasizing the features required to construct a gener-
alized HMC algorithm. In this formalism, a single dynamical body is described by a canonical
triplet of real-valued variables ®𝑥 = (𝑝, 𝑞, 𝑟) whose time evolution is determined by two Hamil-
tonian functions 𝐻 (𝑝, 𝑞, 𝑟) and 𝐺 (𝑝, 𝑞, 𝑟). A generalized Hamiltonian mechanics that conserves
both Hamiltonian functions results from choosing the rate of change 𝑑®𝑥/𝑑𝑡 to be perpendicular to
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the gradients of these two functions
𝑑®𝑥
𝑑𝑡

= ®∇𝐻 × ®∇𝐺, (1)

with respect to the coordinate system ®𝑥. This equation is the cross product of two conservative
vector fields and satisfies ®∇· ( ®∇𝐻× ®∇𝐺) = 0. This means that 𝑑®𝑥/𝑑𝑡 describes incompressible flows
in phase space, so that Eq. (1) preserves the volume of phase space exactly. We can generalize this
to a system of 𝑁 coupled Nambu canonical triplets (𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖), 1 ≤ 𝑖 ≤ 𝑁 , for which the generalized
form of Eq. (1) gives the rate of change of any function 𝐹 (𝑝, 𝑞, 𝑟) as

𝑑𝐹

𝑑𝑡
=

𝑁∑︁
𝑖=1

𝜕 (𝐹, 𝐻, 𝐺)
𝜕 (𝑞𝑖 , 𝑝𝑖 , 𝑟𝑖)

≡ [𝐹, 𝐻, 𝐺] . (2)

Each term in the sum is calculated as a Jacobian, and in the final equality we have defined the
generalized Poisson bracket called the Nambu bracket. We consider Hamiltonian functions satisfy-
ing 𝐻 (𝑝, 𝑞, 𝑟) = 𝐻 (−𝑝, 𝑞, 𝑟) and 𝐺 (𝑝, 𝑞, 𝑟) = 𝐺 (−𝑝, 𝑞, 𝑟), in which case the reverse trajectory is
obtained by reflecting the set of variables {𝑝𝑖} → {−𝑝𝑖}, 1 ≤ 𝑖 ≤ 𝑁 .

3. Extending HMC phase space

This section describes how to generalize the classical MD component of the HMC algorithm
to instead use a classical Nambu mechanics system. For the HMC, we can add fictitious variables
to the Feynman path integral without changing the physical content of the theory

⟨𝐴⟩ = 1
𝑍

∫
[𝑑𝑈] [𝑑𝜋]𝐴(𝑈)𝑒−𝑆 (𝑈)−𝜋2/2, (3)

since the contribution from the 𝜋 integral cancels in the normalization. If we interpret the sum
𝐻 (𝑈, 𝜋) = 𝑆(𝑈) + 𝜋2/2 as the Hamiltonian of a classical mechanics system, we can evaluate path
integral using a Markov chain Monte Carlo driven by evolution in a fictitious MD time [5]. For
𝑛 = 3 Nambu mechanics, we add two fictitious variables

⟨𝐴⟩ = 1
𝑍 ′

∫
[𝑑𝑈] [𝑑𝜋] [𝑑𝜌]𝐴(𝑈)𝑒−𝑆 (𝑈)−𝜋2/2−𝜌2/2, (4)

and interpret the sum 𝐻 (𝑝, 𝑞, 𝑟) = 𝑆(𝑈) + 𝜋2/2 + 𝜌2/2 as one of the Hamiltonians of the Nambu
mechanics system. We can freely choose the form of the auxiliary Hamiltonian 𝐺 (𝑝, 𝑞, 𝑟). We
evaluate the path integral by integrating the classical Nambu evolution equations in Eq. (2). At
the end of the trajectory the new configuration is accepted with probability 𝑃𝐴 = min(1, 𝑒−Δ𝐻).
Provided the integrator for the classical evolution equations is volume-preserving and reversible,
this algorithm will satisfy detailed balance for any choice of the auxiliary Hamiltonian [6].

4. Application to lattice gauge theory

Here, we develop the finite-time-step updates needed to apply Nambu mechanics to lattice
gauge theory. We consider first a single gauge link 𝑈 ∈ 𝑆𝑈 (𝑁). This is an 𝑁2 − 1 dimensional
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manifold which, when needed, is viewed as a function of 𝑁2−1 real variables 𝑞𝑎 which parameterize
the group in the vicinity of a constant group element 𝑈 as

𝑈′ = exp ©«−
𝑁2−1∑︁
𝑎=1

𝑞𝑎𝑇𝑎
ª®¬𝑈. (5)

Here 𝑇𝑎 are the anti-hermitian Lie group generators and 𝑎 is an adjoint representation index. It is
convenient to introduce derivatives with respect to the link variables, defined abstractly as 𝒆𝑎, in
terms of the variables 𝑞𝑎. For a function 𝐹 (𝑈), the derivative with respect to the link variable is

𝒆𝑎𝐹 (𝑈) = 𝜕𝐹 (𝑈′)
𝜕𝑞𝑎

����
𝑞=0

. (6)

For the gauge link 𝑈 this means
𝒆𝑎𝑈 = −𝑇𝑎𝑈. (7)

The minus sign is present in Eq. (5) so that the derivative operator in Eq. (6) corresponds to a basis
in the Lie algebra of right-invariant vector fields that satisfy [𝒆𝑖 , 𝒆 𝑗] = 𝑐𝑘

𝑖 𝑗
𝒆𝑘 [7].

Next, we formulate the Nambu mechanics classical system. To do so, to each of the variables
{𝑞𝑎} in Eq. (5) we associate the two additional variables {𝑝𝑎, 𝑟𝑎}, 1 ≤ 𝑎 ≤ 𝑁2 − 1. These form
the Nambu canonical triplets for the link. For the main Hamiltonian 𝐻 (𝑝,𝑈, 𝑟) against which we
accept/reject, we choose

𝐻 =
1
2

𝑁2−1∑︁
𝑎=1

𝑝2
𝑎 +

1
2

𝑁2−1∑︁
𝑎=1

𝑟2
𝑎 + 𝑆(𝑈). (8)

Here 𝑆(𝑈) is the target action which dictates field dynamics, for example the Wilson gauge action
in pure SU(3) gauge theory. Dynamical fermions may be included in the usual manner. According
this form of 𝐻, at the beginning of each trajectory the variables 𝑝 and 𝑟 are drawn from a Gaussian
distribution of unit variance. For the auxiliary Hamiltonian 𝐺 (𝑝,𝑈, 𝑟), we consider the separable
form

𝐺 (𝑝, 𝑞, 𝑟) = 𝑔1(𝑝) + 𝑔2(𝑟) + 𝑔3(𝑈), (9)

subject to the reversibility condition 𝑔1(𝑝) = 𝑔1(−𝑝). No restrictions are placed on the remaining
functions 𝑔2(𝑟) and 𝑔3(𝑈).

Next, we construct the finite-time-step updates for each of the classical variables. To make a
gauge link update, we can use Eq. (2) to calculate the rate of change of 𝑈

¤𝑈 =

𝑁2−1∑︁
𝑎=1

𝜕 (𝐻,𝐺)
𝜕 (𝑝𝑎, 𝑟𝑎)

𝒆𝑎𝑈 =

𝑁2−1∑︁
𝑎=1

𝜕 (𝐻,𝐺)
𝜕 (𝑝𝑎, 𝑟𝑎)

(−𝑇𝑎)𝑈. (10)

For 𝐻 and 𝐺 which are separable functions of the phase space variables, the factor multiplying the
gauge link 𝑈 is independent of 𝑈 and this differential equation has a simple solution. The form of
the discrete update can thus be written

𝑈𝑛+1 = exp ©«−𝜏
𝑁2−1∑︁
𝑎=1

𝜕 (𝐻,𝐺)
𝜕 (𝑝𝑎, 𝑟𝑎)

𝑇𝑎
ª®¬𝑈𝑛. (11)
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This is a left-multiplication by an SU(N) group element independent of 𝑈, under which the Haar
measure is invariant. The updates for the real-valued phase space variables {𝑝𝑎, 𝑟𝑎} are linear

𝑝
𝑛+1/2
𝑎 = 𝑝𝑛𝑎 +

𝜏

2

[
𝒆𝑎𝐺 · 𝜕𝐻

𝜕𝑟𝑎
− 𝒆𝑎𝐻

𝜕𝐺

𝜕𝑟𝑎

]
,

𝑟
𝑛+1/2
𝑎 = 𝑟𝑛𝑎 +

𝜏

2

[
𝒆𝑎𝐻 · 𝜕𝐺

𝜕𝑝𝑎
− 𝒆𝑎𝐺

𝜕𝐻

𝜕𝑝𝑎

]
.

(12)

As in the usual HMC, we string these updates together in symmetric arrangements to craft
reversible integrators. One such combination is a PRURP scheme

𝑝
𝑛+1/2
𝑎 = 𝑝𝑛𝑎 +

𝜏

2

[
𝒆𝑎𝐺 · 𝜕𝐻

𝜕𝑟𝑎
− 𝒆𝑎𝐻 · 𝜕𝐺

𝜕𝑟𝑎

]
,

𝑟
𝑛+1/2
𝑎 = 𝑟𝑛𝑎 +

𝜏

2

[
𝒆𝑎𝐻 · 𝜕𝐺

𝜕𝑝𝑎
− 𝒆𝑎𝐺 · 𝜕𝐻

𝜕𝑝𝑎

]
,

𝑈𝑛+1 = exp ©«−𝜏
𝑁2−1∑︁
𝑎=1

𝜕 (𝐻,𝐺)
𝜕 (𝑝𝑎, 𝑟𝑎)

𝑇𝑎
ª®¬𝑈𝑛,

𝑟𝑛+1
𝑎 = 𝑟

𝑛+1/2
𝑎 + 𝜏

2

[
𝒆𝑎𝐻 · 𝜕𝐺

𝜕𝑝𝑎
− 𝒆𝑎𝐺 · 𝜕𝐻

𝜕𝑝𝑎

]
,

𝑝𝑛+1
𝑎 = 𝑝

𝑛+1/2
𝑎 + 𝜏

2

[
𝒆𝑎𝐺 · 𝜕𝐻

𝜕𝑟𝑎
− 𝒆𝑎𝐻 · 𝜕𝐺

𝜕𝑟𝑎

]
,

(13)

All update steps are explicit, meaning that the rates of change are evaluated at the current instant
in the MD time. The reversibility of this scheme is easily verified. Since the updating scheme is
reversible, the first errors in the conservation of 𝐻 and 𝐺 occur at order 𝜏2.

We now consider the full lattice of link variables 𝑈 (𝑥, 𝜇) residing at lattice location 𝑥

and Euclidean direction 𝜇. Each link is assigned a set of 𝑁2 − 1 Nambu canonical triplets
in the manner described above, so that the classical Nambu phase space assumes the form{
𝑈 (𝑥, 𝜇), {𝑝𝑎 (𝑥, 𝜇), 𝑟𝑎 (𝑥, 𝜇)}1≤𝑎≤𝑁2−1

}
. The derivatives which enter the classical evolution equa-

tions are extended to include lattice location and direction indices

𝜕

𝜕𝑝𝑎
→ 𝜕

𝜕𝑝
𝑥,𝜇
𝑎

,
𝜕

𝜕𝑟𝑎
→ 𝜕

𝜕𝑟
𝑥,𝜇
𝑎

, 𝒆𝑎 → 𝒆𝑥,𝜇𝑎 . (14)

Each of these derivatives return zero when acting on a variable with different values of 𝑥 or 𝜇. The
main Hamiltonian 𝐻 (𝑝,𝑈, 𝑟) now includes the sum over lattice locations and directions:

𝐻 =
1
2

∑︁
𝑥,𝜇

𝑁2−1∑︁
𝑎=1

𝑝𝑎 (𝑥, 𝜇)2 + 1
2

∑︁
𝑥,𝜇

𝑁2−1∑︁
𝑎=1

𝑟𝑎 (𝑥, 𝜇)2 + 𝑆(𝑈). (15)

We’ve managed to craft reversible and volume-preserving updates without any restrictions on the
functions of 𝑟 and 𝑈 entering the auxiliary Hamiltonian 𝐺. As such, we can choose it to contain
non-local functions of the gauge links, the forces from which enter the discrete momentum updates
in Eq. (13).

At this point two things should be noted: First, the functions of the gauge links are constant
between adjacent 𝑝 and 𝑟 updates and thus need not be reevaluated between these steps. This
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means that when dynamical fermions are included, this algorithm requires no additional fermion
force evaluations than does the usual HMC. For this reason, the Nambu HMC is not expected to be
much more expensive than the HMC. Second, when examining the form of the gauge link update
in Eq. (11), we find that it is a rather awkward sum over the product of three objects with adjoint
representation indices 𝑎. This suggests that the updates do not obey a simple gauge symmetry as
in the standard HMC. This is not a problem since the algorithm preserves the Haar measure and
has the gauge-invariant statistical weight as its fixed point. One could even choose the auxiliary
Hamiltonian 𝐺 to be an explicitly gauge-non-invariant function of the gauge links and still recover
the desired gauge-invariant distribution, which we have confirmed numerically.

5. Numerical tests

We now present some preliminary tests of the algorithm in pure SU(3) gauge theory to examine
how the auxiliary Hamiltonian affects the sampling efficiency. We use the Wilson action in the main
Hamiltonian in Eq. (15). Tests are performed on a 144 lattice using periodic boundary conditions.
We have numerically confirmed the correctness of this algorithm by performing high-precision
plaquette measurements for several choices of the auxiliary Hamiltonian 𝐺. Some choices for
gauge link functions in 𝐺 included Polyakov loops, Wilson loops and the gauge-non-invariant
function ReTr𝑈 (𝑥, 𝜇). In our tests, we found that Wilson loops provided the greatest benefit of the
functions listed above, so these are the tests which we present. There are many non-local functions
to try with this algorithm, and it is likely some will provide greater benefit than Wilson loops.

For our tests, we choose the auxiliary Hamiltonian to be linear in the variable 𝑟𝑎 (𝑥, 𝜇):

𝐺 (𝑈, 𝑟) = 𝛾
∑︁
𝑥,𝜇

𝑁2−1∑︁
𝑎=1

𝑟𝑎 (𝑥, 𝜇) − 𝜅 𝑓 (𝑈). (16)

Here 𝛾 and 𝜅 are constant parameters which can be varied to optimize the algorithm. The virtue of
this auxiliary Hamiltonian is that for 𝜅 = 0 and 𝛾 = 1, the variables 𝑟𝑎 (𝑥, 𝜇) become non-dynamic
and the classical evolution equations for the remaining variables reduce to those of the familiar
Hamiltonian mechanics. As such, this auxiliary Hamiltonian provides the “minimal deformation"
of the HMC. Here, we choose the function 𝑓 (𝑈) in Eq. (16) to be the sum of all 3× 3 Wilson loops.
We arbitrarily chose the parameters 𝛾 = 1 and 𝜅 = 3.

An important note concerns the cost comparison between this algorithm and the HMC. The
trajectory length and acceptance ratio are free parameters which, in both algorithms, can be tuned
to achieve optimal sampling efficiency; these likely take different values for each of the algorithms.
Here, both the trajectory length and the separation of two Markov chain samples will be described
in units of MD time and by the number of Wilson force evaluations performed. We do not attempt
to tune the trajectory length but instead the choose the HMC and Nambu HMC trajectories to
contain the same number of Wilson force evaluations and adjust the discrete time step separately
for each algorithm to achieve the desired acceptance ratio. This is done with the view in mind
that the fermion force evaluation dominates the computing cost per update, and so the additional
overhead from evaluating gradients of the non-local function of the gauge links likely won’t add
much overhead to realistic simulations. To test the sampling efficiency we measure the normalized
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Figure 1: Comparison at 𝛽 = 7 of the normalized autocorrelation 𝜌AC decreasing as a function of the number
of Wilson force evaluations for the HMC and Nambu HMC with 3 × 3 Wilson loops (NHMC WL). The left
and right plots show the autocorrelation of the plaquette and 3 × 3 Wilson loop, respectively.
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Wilson force evaluations

0.0

0.2

0.4

0.6

0.8

1.0

AC

Plaquette = 6
HMC
NHMC WL

0 1000 2000 3000 4000 5000
Wilson force evaluations
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Figure 2: Comparison at 𝛽 = 6 of the normalized autocorrelation 𝜌AC decreasing as a function of the number
of Wilson force evaluations for the HMC and Nambu HMC with 3 × 3 Wilson loops (NHMC WL). The left
and right plots show the autocorrelation of the plaquette and 3 × 3 Wilson loop, respectively.

autocorrelation of observables. For a set of measurements {𝑂} with mean 𝑂, the autocorrelation
𝑅AC, normalized autocorrelation 𝜌AC and integrated autocorrelation 𝜏int are defined as

𝑅AC(𝑘) =
1

𝑁 − 𝑘

𝑁−𝑘−1∑︁
𝑖=0

(
𝑂 (𝑖) −𝑂

) (
𝑂 (𝑖 + 𝑘) −𝑂

)
, (17)

𝜌AC(𝑘) =
𝑅AC(𝑘)
𝑅AC(0)

, 𝜏int =
1
2
+

∞∑︁
𝑘=0

𝜌𝐴𝐶 (𝑘). (18)

In practice we truncate the sum in 𝜏int when we find 𝜌𝐴𝐶 (𝑘) is consistent with zero, within errors.
We make our tests at two values of 𝛽, plotting the decrease in the normalized autocorrelation with
an increasing number of Wilson force evaluations for both the Nambu HMC and HMC. In these
tests the HMC uses a standard leapfrog integrator. We haven’t made an detailed tuning effort here
to optimize the parameters entering each algorithm.

The first test is performed at 𝛽 = 7. The results can be found in Fig. 1. Plotted errors are
calculated using the jackknife method. This test utilizes 5000 trajectories. Trajectories contain 300
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Wilson force evaluations; for the Nambu HMC, this corresponds to 𝑡 = 3.0 MD time units at an
acceptance ratio of 0.766 and, for the HMC, 𝑡 = 3.5 MD time units at an acceptance ratio 0.877.
We find that the Nambu HMC provides a more rapid plaquette decorrelation, with an integrated
autocorrelation time which is 66 ± 3% of that produced by the HMC. We also find a slightly more
rapid 3 × 3 Wilson loop decorrelation, with an integrated autocorrelation time 93 ± 3% of that
produced by the HMC.

The second test is performed at 𝛽 = 6. The results can be found in Fig. 2. Here again the
test utilize 5000 trajectories, each of which contains 300 Wilson force evaluations. For the Nambu
HMC this corresponds to 𝑡 = 3.8 MD time units with acceptance ratio 0.69, and for the HMC
𝑡 = 4.3 MD time units with acceptance ratio 0.82. We again find that the Nambu HMC more
rapidly decorrelates the plaquette; the integrated autocorrelation time is 74 ± 2% that of the HMC.
The Nambu HMC performs more poorly with the Wilson loop integrated autocorrelation, which is
108 ± 3% that of the HMC.

6. Conclusions

In this talk we’ve described a generalization of the HMC algorithm which utilizes Nambu’s
generalized Hamiltonian mechanics. The virtue of this formalism is that the classical evolution
equations used in the MD portion of the update can include forces from non-local functions of the
gauge links. We hope to choose these non-local functions to be the relevant degrees of freedom
in the continuum limit, thereby reducing CSD. In preliminary tests of the algorithm we find that
it consistently produces shorter autocorrelation times than the HMC for the the plaquette, while
producing comparable autocorrelation times for the 3 × 3 Wilson loop. In these tests we did not
make a careful tuning to optimize the Nambu HMC and used a function with a modest amount of
non-locality. The results here indicate that with a more effective non-local function and a careful
tuning of the algorithm, the Nambu HMC could very well out perform the HMC.

The Nambu HMC can easily be extended to include dynamical fermions, and requires no more
fermion force evaluations than the usual HMC. Fermions contribute the majority of the cost per link
update, and so there isn’t much additional overhead from evaluating the gradients of the additional
non-local functions in this algorithm.

Clearly, there are a vast number of choices one could make for the second auxiliary Hamiltonian
𝐺 and it is not immediately obvious which choice would most effectively provide the long-distance
communication required to overcome CSD. A particularly attractive option is to include the fermion
determinant in the auxiliary Hamiltonian with a large coefficient, as this adds non-locality with
essentially no added computational cost compared to the HMC. Tests of additional non-local
functions and simulations including dynamical fermions are the subject of current study.
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