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The expressive power of neural networks in modelling non-trivial distributions can in principle be
exploited to bypass topological freezing and critical slowing down in simulations of lattice field
theories. Some popular approaches are unable to sample correctly non-trivial topology, which may
lead to some classes of configurations not being generated. In this contribution, we present a novel
generative method inspired by a model previously introduced in the ML community (GFlowNets).
We demonstrate its efficiency at exploring ergodically configuration manifolds with non-trivial
topology through applications such as triple ring models and two-dimensional lattice scalar field
theory.
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1. Introduction

Neural networks can be employed to represent numerically systems with many strongly-
interacting degrees of freedom, such as quarks and gluons in Quantum Chromodynamics (QCD).
Currently, the main tool for understanding QCD is the Monte Carlo Markov Chain (MCMC) method.
However, non-trivial challenges can affect MCMC simulations, including critical slowing down [1]
and topological freezing [2, 3]. The very large number of neurons in modern neural network
architectures could improve the understanding of statistical field theories and at the same time help
to model complex distributions; see, e.g., the reviews [4–6].

The most widely used neural network architectures can be classified into two types based on how
they learn. One type of architecture is trained on a pre-existing data set. This is commonly referred
to as supervised learning. Examples with applications in lattice field theory include Generative
Adversarial Networks [7, 8] and Diffusion Models (DMs) [9–12]. In contrast, the second type
learns directly, without any need for training data, on a reward function or a probability density,
as in Reinforcement Learning, Normalising Flow (NFs) [13–19] and variations thereof, such as
Continuous Normalizing Flow [20–23]. This is referred to as unsupervised learning.

Ref. [24] pointed out that NFs may suffer from non-ergodicity in the presence of topological
constraints: since the network learns an invertible map between the prior and the target distribution,
issues appear when the prior distribution is unimodal, e.g. a Gaussian, but the target distribution is
bi- or multimodal. Ref. [24] contains some illustrative examples for two-dimensional images and
proposes a modified version called Stochastic Normalizing Flow, which was subsequently used in
lattice field theory [25, 26]. Ref. [19] contains a detailed study of mode collapse in lattice field
theory when using NFs, demonstrating issues arising with modelling multimodal distributions.

In this contribution we focus on approaches where the model is trained directly on the target
distribution, i.e., unsupervised learning models. Besides NFs, we introduce unsupervised DMs,
which should not be confused with the DMs studied in Refs. [9–12]. We start by investigating the
ability of NFs and unsupervised DMs to learn global features for given probability distributions.
A triple-ring model is used as a target manifold to study their performance. We demonstrate that
topology plays an essential role in the generation process and determine the global features of the
output manifold. To circumvent the problem with topology, we propose a new structure based on
DMs and verify its effectiveness for the triple-ring model. Finally, the magnetisation in a two-
dimensional 𝜙4 lattice theory is studied via the above neural network architectures. Our method is
inspired by an approach previously introduced in the ML community, called GFlowNets [27, 28].

2. Problem description

Normalizing flows and diffusion models are two of the most widely used machine learning
generative methods in lattice field theory. NF shapes a distribution 𝑃target(𝑧𝑡 ) from a prior 𝑃(𝑧0) by
changing the volume element [15],

𝑃target(𝑧𝑡 ) = 𝑃0( 𝑓 (𝑧𝑡 ))
����𝜕 𝑓 (𝑧𝑡 )𝜕𝑧𝑡

���� , (1)

where 𝑓 −1 is a function with learnable parametersΘ, mapping an element 𝑧0 from the prior distribu-
tion to the target distribution, 𝑧𝑡 = 𝑓 −1(𝑧0). Differentiability and reversibility from Eq. (1) demands

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
4
2

Exploring Generative Networks for Manifolds with Non-Trivial Topology Shi-Yang Chen

that NFs are a bĳection, which implies that the modelled manifold from NFs is homeomorphic to
the prior manifold.

Diffusion models evolve the prior distribution towards a target distribution at some time 𝑇 . The
pathway of evolution is driven by the Langevin equation,

𝑧𝑡+1 = 𝑧𝑡 − 𝐾 (𝑧𝑡 )𝐷2(𝑧𝑡 )𝑑𝑡 +
√

2𝑑𝑡𝐷 (𝑧𝑡 )𝜂𝑡 , ⟨𝜂𝑡⟩𝜂 = 0, ⟨𝜂𝑠𝜂𝑡⟩𝜂 = 𝛿(𝑠 − 𝑡), (2)

where 𝐷 (𝑧𝑡 ) and𝐾 (𝑧𝑡 ) the diffusion and drift estimated by neural networks with 𝑡 the fictitious time,
and 𝜂𝑡 is white or Gaussian noise. The stochasticity enables DMs to generate multiple 𝑧𝑡 ’s, resulting
in different possible paths, as in the path integral approach, similar to stochastic quantisation [9].
The connectivity of the output manifold 𝑧𝑡+1 is verified, if the manifolds 𝐾 (𝑧𝑡 ) and 𝐷 (𝑧𝑡 ) are
connected, since a vector space formed by multiplication or addition of two connected vector spaces
is also connected. Therefore, the connectivity of the manifolds 𝐾 (𝑧𝑡 ) and 𝐷 (𝑧𝑡 ) will determinate
the topology of the output manifold 𝑧𝑡+1. Due to the linear multiplication and continuous activation
functions, the manifolds 𝐾 (𝑧𝑡 ) and 𝐷 (𝑧𝑡 ) from neural networks are connected if the input manifold
𝑧𝑡 is connected.

To verify the above conclusion, NFs and unsupervised DMs are used to generate distributions
with three rings in the two-dimensional plane (triple-ring model from now on),

𝑃rings(𝑟) = exp

(
−

3∑︁
𝑖=1

(𝑟 − 𝜇𝑖)2/0.01

)
, 𝑟 =

√︃
𝑥2 + 𝑦2, (3)

with 𝜇1 = 0.5, 𝜇2 = 1.5 and 𝜇3 = 2.5. The prior distribution is a Gaussian one. The NF model we
use here is the one proposed in Ref. [29]. As stated, our unsupervised DMs learn from the logarithm
of the target distribution, rather than from a training dataset. The corresponding cost function (KL
divergence) reads

𝐷KL(𝑃(𝑧𝑡 | |𝑄(𝑧𝑡 )) =
∫

𝑃(𝑧𝑡 ) log
𝑃(𝑧𝑡 )
𝑄(𝑧𝑡 )

𝑑𝑧𝑡 , (4)

where 𝑄(𝑧𝑡 ) the target distribution, and the learnt distribution is written as

𝑃(𝑧𝑡 ) =
𝑃(𝑧𝑡 , 𝑧𝑡−1, · · · , 𝑧1 |𝑧0)
𝑃(𝑧𝑡−1, 𝑧𝑡−2 · · · , 𝑧0 |𝑧𝑡 )

𝑃(𝑧0)

=
𝑃 𝑓 ,𝑡−1(𝑧𝑡 |𝑧𝑡−1)𝑃 𝑓 ,𝑡−2(𝑧𝑡−1 |𝑧𝑡−2) · · · 𝑃 𝑓 ,0(𝑧1 |𝑧0)
𝑃𝑏,𝑡 (𝑧𝑡−1 |𝑧𝑡 )𝑃𝑏,𝑡−1(𝑧𝑡−2 |𝑧𝑡−1) · · · 𝑃𝑏,1(𝑧0 |𝑧1)

𝑃(𝑧0), (5)

with the assumption that 𝑃 𝑓 ,𝑡−1(𝑧𝑡 |𝑧𝑡−1, 𝑧𝑡−2) = 𝑃 𝑓 ,𝑡−1(𝑧𝑡 |𝑧𝑡−1), and analogously for 𝑃𝑏,𝑡 . The
forward process and corresponding distribution 𝑃 𝑓 ,𝑡 (𝑧𝑡+1 |𝑧𝑡 ) from 𝑡 to 𝑡 +1 is estimated via Eq. (2).
Similarly, 𝑃𝑏,𝑡 (𝑧𝑡−1 |𝑧𝑡 ) is the backward process from 𝑡 to 𝑡−1. The forward and backward processes
are estimated by a series of neural networks – see Fig. 1 – with an argument 𝑧𝑡 and two output drift
𝐾 (𝑧𝑡 ) and diffusion 𝐷 (𝑧𝑡 ). The networks for the forward and backward processes share the same
structure, but differ in terms of weights and biases. For a certain 𝑡, the argument 𝑧𝑡 is processed by
a 2D-convolution layer with 32 filters. After a non-linear mapping by ReLU, it flows into another
2D-convolution layer with 2 filters. The processed data flow is split into two parts. One is the drift
and the other one, after applying the Softplus activation function mapping, is the diffusion.

The target, prior and output manifolds are shown as Fig. 2. As shown in Fig. 2(a), the
target manifold is made of three concentric circles and each of them forms a connected area.
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Figure 1: The architecture for forward and backward processes at a fictitious time 𝑡.

(a) Target distribution. (b) Prior distribution.

(c) Distribution generated using normalizing
flow.

(d) Distribution generated using an unsupervised
diffusion model

Figure 2: Target and prior distributions (above) and incomplete distributions generated using normalizing
flow and an unsupervised diffusion model (below).
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Fig. 2(b) demonstrates that the prior is a normal distribution with trivial topology. Given that
homeomorphism maps preserve the topology, the output manifold from NFs is an open ring, which
has trivial topology. This is consistent with the structure of the prior. The output manifold from the
unsupervised DM is a closed ring (see Fig. 2(d)), in agreement with the discussion above. However,
both unsupervised DMs and NFs here only produce inner ring configurations. The selection of this
particular ring could be due to a higher density of the prior distribution near the origin.

3. Stochastic pathway

The major barrier to sampling configurations via NFs and unsupervised DMs for the outer
rings is topology. Both NFs and unsupervised DMs keep the connectivity of the prior, despite the
presence of white noise in the Langevin process. This is a major difference for the unsupervised
DMs learning from the action, compared with the ones learning from a training data set. To sample
configurations from a disconnected manifold, a randomized pathway is required.

To improve sampling, the action 𝑆(𝑧𝑡 ) ∝ log 𝑃(𝑧𝑡 ) should be included in neural network
– see Fig. 3 – since this may not be a continuous function. Moreover, in addition to the state
proposed by the forward process 𝑃 𝑓 ,𝑡 (𝑧 𝑓 ,𝑡 |𝑧𝑡 , 𝑆(𝑧𝑡 )), the state 𝑧𝑏,𝑡 suggested by the backward
process 𝑃𝑏,𝑡 (𝑧𝑏,𝑡 |𝑧𝑡 , 𝑆(𝑧𝑡 )) must also be considered, see Fig. 5 below.

Figure 3: Improved architecture for the forward and backward processes at fictitious time 𝑡.

One more neural net 𝑃(𝑧 𝑓 ,𝑡 , 𝑧𝑡 , 𝑧𝑏,𝑡 ) with the proposed states 𝑧 𝑓 ,𝑡 and 𝑧𝑏,𝑡 from the forward
and backward processes is introduced to decide which pathways will be accepted. The network
flattens the augmented pair 𝑧 𝑓 ,𝑡 and 𝑧𝑏,𝑡 , and then computes the probability of the upper pathway
via two dense layers with 50 neurons and ReLU and Sigmoid activation functions, see Fig. 4. The
output probability is limited and less than 0.5 to prevent pathway collapse. The structure of the
neural network at fictitious time 𝑡 is shown in Fig. 5. To optimize the network’s parameters, the
analytical formula for 𝑃(𝑧𝑡 ) is needed. This is given by
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Figure 4: The architecture for 𝑃(𝑧𝑡 |𝑧 𝑓 ,𝑡−1, 𝑧𝑡 , 𝑧𝑏,𝑡−1) and 𝑃(𝑧𝑡−1 |𝑧𝑏,𝑡 , 𝑧𝑡 , 𝑧 𝑓 ,𝑡−1) at fictitious time 𝑡.

𝑃(𝑧𝑡 )
𝑃(𝑧𝑡−1)

= 𝛿(𝑧𝑡 − 𝑧 𝑓 ,𝑡 )
𝑃(𝑧𝑡 |𝑧 𝑓 ,𝑡−1, 𝑧𝑡 , 𝑧𝑏,𝑡−1)𝑃 𝑓 ,𝑡−1(𝑧 𝑓 ,𝑡 |𝑧𝑡−1, 𝑆(𝑧𝑡−1))
𝑃(𝑧𝑡−1 |𝑧𝑏,𝑡 , 𝑧𝑡 , 𝑧 𝑓 ,𝑡 )𝑃𝑏,𝑡 (𝑧𝑡−1 |𝑧 𝑓 ,𝑡 , 𝑆(𝑧 𝑓 ,𝑡 ))

+ 𝛿(𝑧𝑡 − 𝑧𝑏,𝑡 )
𝑃(𝑧𝑡 |𝑧 𝑓 ,𝑡−1, 𝑧𝑡 , 𝑧𝑏,𝑡−1)𝑃𝑏,𝑡−1(𝑧𝑏,𝑡 |𝑧𝑡−1, 𝑆(𝑧𝑡−1))
𝑃(𝑧𝑡−1 |𝑧𝑏,𝑡 , 𝑧𝑡 , 𝑧 𝑓 ,𝑡 )𝑃 𝑓 ,𝑡−1(𝑧𝑡−1 |𝑧𝑏,𝑡 , 𝑆(𝑧𝑏,𝑡−1))

. (6)

The first term of Eq. (6) means the state 𝑧 𝑓 ,𝑡 proposed by the forward process is accepted
and the corresponding posterior 𝑃𝑏,𝑡 (𝑧𝑡−1 |𝑧𝑡 , 𝑆(𝑧𝑡 )) is given by the backward process. Using
Bayes’ theorem, the left hand side of Eq. (6) is given the division of 𝑃 𝑓 ,𝑡−1(𝑧 𝑓 ,𝑡 |𝑧𝑡−1, 𝑆(𝑧𝑡−1))
by 𝑃𝑏,𝑡 (𝑧𝑏,𝑡−1, |𝑧𝑡 , 𝑆(𝑧𝑡 )), multiplying the corresponding weight. The weight is estimated by an
extra network and is the probability of the forward pathway divided by 𝑃(𝑧𝑡−1 |𝑧𝑏.𝑡 , 𝑧𝑡 , 𝑧 𝑓 ,𝑡 ), i.e.
the probability of the forward pathway being selected using the same network. Similarly, one can
compute the contribution from the backward process, which is shown as the second term in Eq. (6).
Combining Eqs. (4) and (6) enables us to estimated the cost function and optimize the network.

The output manifold from our modified neural is shown in Fig. 6. Our network reproduces the
features of the target distribution. We note however that the samples are noisy. This happens because
for a diffusion model, the drift of the backward process at fictitious time 𝑖 includes ∇ log 𝑃(𝑧𝑖). In
our approach, this term is estimated by the neural network 𝑃𝑏,𝑖 (𝑧𝑖 |𝑧𝑖−1, 𝑆(𝑧𝑖−1)).

4. Scalar field theory

The physics model we used here is a self-interacting real scalar field on a two-dimensional
(𝑑 = 2) lattice, |Λ| = 𝑁𝑇 × 𝑁𝐿 . The corresponding action is

𝑆(𝜙) =
∑︁
𝑥∈Λ

©­«−2𝜅
𝑑∑̂︁

𝜇=1
𝜙(𝑥)𝜙(𝑥 + 𝜇̂) + (1 − 2𝜆)𝜙2(𝑥) + 𝜆𝜙4(𝑥)ª®¬ , (7)
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Figure 5: The structure of the novel network at diffusion time 𝑡.

Figure 6: Distribution generated using our novel neural net.

where 𝜅 is the hopping parameter and 𝜆 the bare coupling constant. The model has a 𝑍2 symmetry.
The symmetry can be observed by estimating the magnetization,

𝑀 =
1

𝑁𝑇𝑁𝐿

∑︁
𝑥∈Λ

𝜙𝑥 . (8)

We have estimated the magnetization for the parameter values 𝜆 = 0.022 and 𝜅 = 0.3 at a volume
|Λ| = 64 × 32, comparing results obtained with our novel approach, normalising flow, and the
unsupervised diffusion model. Histograms of 𝑀 are shown in Fig. 7. This figure demonstrates that
NFs and unsupervised DMs recreate one peak, whereas our novel network generates the correct
distribution with two peaks.

5. Summary

In this contribution, we have studied the performance of NFs and unsupervised DMs in a
triple-ring model. Since the prior manifold has a trivial topology and the target distribution has

7
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Figure 7: Histograms of the magnetisation 𝑀 in the two-dimensional scalar field theory obtained using the
novel architecture introduced in this work (above), normalising flow (middle) and unsupervised diffusion
models (below).

three disconnected components, both NFs and unsupervised DMs suffer from ergodicity problems
connected with the presence of non-trivial topological sectors, leading to some regions in config-
uration space not being generated. To sample data from the correct support set, in each diffusion
step, 𝑧𝑏,𝑡 from the backward network of unsupervised DMs can be used. One more network is
introduced to initiate a route by choosing between 𝑧𝑏,𝑡 and 𝑧 𝑓 ,𝑡 from the forward network. We find
that this new structure of the network is able to randomize the pathway so as to improve sampling
for the triple-ring model. In two-dimensional 𝜙4 model, NFs and unsupervised DMs reproduce
only a single peak for the magnetization, while our method results in configurations obeying the
expected 𝑍2 symmetry.
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