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1. Introduction

Theories with a complex Boltzmann weight are hard to simulate using conventional numerical
methods based on importance sampling, due to the sign and overlap problems [1]. A prime example
is QCD at nonzero baryon density, in which the quark determinant is complex for real quark
chemical potential [2, 3],

[det M(1)]* = det M(—u*) € C. (1)

Complex Langevin (CL) dynamics, in which the degrees of freedom are analytically extended,
provides a potential solution, as it does not rely on importance sampling but explores a complexified
manifold via a stochastic process [4, 5]. It is an extension of stochastic quantisation [6, 7], which is
equivalent to path integral quantisation. CL has been shown to work in lattice field theories in three
[8] and four [9] Euclidean dimensions with a severe sign problem, including in QCD [10-14], but it
may also fail, even in simple models [15—17]. This situation was clarified a few years ago [18-20]
by the derivation of the formal relation between the complex distribution on the real manifold and
the real and positive distribution on the complexified manifold, which is effectively sampled during
the CL process, leading to practical criteria for correctness which need to be verified a posteriori.
Nevertheless, issues remain and the reliability of the method depends on a precise understanding
of the behaviour of the distribution at infinity and near poles in the CL drift. Recent work can be
found in e.g. Refs. [21-25].

As should be clear, a crucial role is played by the distribution on the complexified manifold.
Unfortunately, this distribution turns out to be elusive, as the Fokker-Planck equation (FPE) linked
to the CL process cannot be solved in general. In fact, even convergence is hard to understand,
except in some simple cases, such as Gaussian models [26] and models in which one can prove the
dynamics takes place in a strip (see below) [27]. A better characterisation of the distribution would
therefore be welcome.

Diffusion models [28-34] are a class of generative Al, which learn distributions from data.
They are widely popular and used in e.g. DALL-E [35] and Stable Diffusion [36]. The methodology
of diffusion models relies on a stochastic process, similar to stochastic quantisation, but instead
of using a known drift term derived from the underlying distribution, it learns the drift from data
previously generated or collected. We have recently explored the relation between diffusion models
and stochastic quantisation in scalar [37, 38] and U(1) gauge theories [39], and studied the evolution
of higher-order cumulants in detail [40]. Further connections between diffusion models and field
theory are pointed out in Refs. [41, 42].

Given the success of diffusion models to learn distributions and the elusiveness of the distri-
bution sampled in the CL process, it makes sense to combine these two approaches to deepen our
understanding of the latter. In the next two sections we first remind the reader of CL dynamics for
theories with a complex Boltzmann distribution and then briefly introduce diffusions models. In
Sec. 4 we then combine these in two simple cases with a single degree of freedom: the exactly
solvable Gaussian case with a complex mass parameter, and the quartic model with a complex mass
parameter, for which the distribution can be proven to be confined to a strip in the complex plane.
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2. Complex Langevin dynamics

Consider one degree of freedom x, with a Boltzmann weight p(x), such that

(O) = / dpWOW,  p) = Zewl-SWI.  Z= / dep(). @

The Langevin process and drift read

dS(x)
dx

where the dot indicates the Langevin time derivative and the noise satisfies (n(¢)n(¢’)) = 26 (¢t —1t").

KO =K@l +n0), K@) = logp(x) = - 3)

The corresponding FPE is
Oip(x;t) = O0x [0x — K(x)] p(x;1), 4)
and for a real Boltzmann weight and drift this process converges to the stationary solution p(x),
typically exponentially fast [7].
When the weight is complex, one may extend x — z = x +{y into the complex plane and write
. d dS(z)
2(t) = K[z()] +n(1), K(z) = ——logp(z) = -
dz dz

However, in this case the FPE cannot be used to show convergence as the corresponding Fokker-

. ®))

Planck Hamiltonian is no longer semi-positive definite [7].
We may consider the CL process,

KO =Kt Ke=Retlogp@,  (u0me) =2M8 =), (©)
O =Ky by, Ky = logp@, y(0ny() = 2My8 =), ()
with noise satisfying N, — Ny = 1. The FPE equation for this process reads
8, P(x,y;1) = [0x (NxOx — Kx) + 0y (Nydy — Ky)| P(x, y31), (8)
such that
(OLx(t) +iy(]), = [ dudy Pl 330G + i), ©)

It is preferable to consider real noise, Ny = 1, N, = 0 [18].
The CL process yields the correct answer if a stationary solution to this FPE exists, such that

/dxdyP(x,y)O(x+iy)=/dxp(x)0(x), (10)

or, shifting the integration variables at a formal level,

p(x) =/dyP(x—iy,y)- (11)

Considerable effort has been invested in deriving criteria for correctness related to the behaviour
of P(x,y) at infinity and near poles of the drift (if there are any), which can be used a posteriori
to justify the results [18-25]. A better understanding of P(x,y) in the stationary limit would
therefore be very welcome. We emphasise that unlike the original weight p(z), P(x, y;t) is real
and semi-positive definite, as it represents the real Langevin process in the two-dimensional plane.
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3. Diffusion models

Diffusion models, as a class of probabilistic generative models, gradually corrupt data with
incrementally increasing noise and are trained to reverse the process to build a generative model
of the data [28-32]. We use the description in terms of stochastic differential equations (SDEs)
[31, 33, 34] and follow the notation of Ref. [40].

The diffusion process consists of two parts. The noise-injecting or forward process is described
by the following SDE,

x(1) = K(x(2), 1) + g(1)n (1), (12)

where K (x(7),t) is a drift term, n ~ N (0, 1) is Gaussian noise and g(7), the diffusion coefficient,
is the time-dependent noise strength. The initial conditions for this process are determined by the
target distribution x(0) = x9 ~ Po(xo) and the process runs between 0 < ¢t < T. Properties of the
distribution at the end of this process, P(x, T), have been studied in Ref. [40].

The second part corresponds to the denoising or backward process. Written in terms of reverse
time 7 = T — t, the SDE reads [43]

xX'(t) =-K(x(7), T -7) + g2(T —7)0xlog P(x, T — 1) + g(T — 7)n(1), (13)

with 0 < 7 < T. Initial conditions are sampled from a normal distribution with a variance
comparable to the variance obtained at the end of the forward process. The so-called score,
0x log P(x, 1), is not known a priori and is approximated by a quantity sg (x, f), which is determined,
or ‘learnt’, during the forward process via score matching [44]. Given a sample dataset of the target
distribution, a score-based model can be trained starting from the Fisher divergence [31],

1 T
£6,2) = 5/0 dtEp(xr) [/l(t)”s@(x,t) —Vlogp(x,z)||§], (14)

where the weight A(¢) is chosen to be the variance of the noise at time 7.

After the diffusion model has been trained, new samples from the target distribution can be
generated by numerically solving the backward stochastic process (13), substituting in the trained
score model s7 (x, 7). Using a simple discretisation with stepsize A7 one solves, for0 < 7 < T,

Xeeae = Xr + [-K (60, T = 1) + &2 (T = 1)5;(xr, T = 1) | AT + (T = 1)VAT 11, (15)

where n; ~ N(0,1). This is indeed remarkably similar [37] to the formulation of stochastic
quantisation, in which, however, the drift is time-independent and derived from a known distribution,
as in Eq. (3), rather than being learnt from data.

4. Application to complex Langevin dynamics

As stated above, for complex actions CL dynamics is capable of generating configurations but
the corresponding probability distribution P(x, y) is typically not available. This makes it hard to
fully assess the reliability of the approach. A diffusion model, however, can learn (the log-derivative
of) this distribution, in the form of the score Vlog P(x,y). Notably, for the diffusion model it is
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irrelevant what the origin of the configurations is. The learned score can subsequently be used to
study aspects of convergence of the CL process or to generate additional configurations.

To investigate the viability of this approach, we start with two simple models of one degree
of freedom, the exactly solvable Gaussian case and a quartic model, both with a complex mass
parameter. In each case we have generated training data by solving the discretised CL process
with stepsize € using the higher-order algorithm of Ref. [45], first applied to CL dynamics in
Ref. [8]. This algorithm improves stepsize corrections from O(¢€) to O(€>/?). We have generated
an ensemble of 10° configurations for training, which are preprocessed by scaling it to zero mean
and unit variance.

In the diffusion model, we employ a variance-exploding scheme, in which the drift term in
Eq. (12) is put to zero, K (x, y; t) = 0. Note that due to the complexification, we have two degrees of
freedom to consider. We choose the diffusion coefficient g () = o*/T and pick o = 10 and T = 1.
To model the score as sg(x, y; ), we use a time-conditioned fully connected neural network using
Gaussian Fourier feature mapping [46]. We choose to run the backward process using 1000 steps
for 10 trajectories to obtain samples. Our choice of hyperparameters is summarised in table 1.
More details can be found in Ref. [40].

Hyperparameter Value Hyperparameter Value
Layers [64, 64] Learning Rate le-4
Time Embedding dims 128 Batch Size 512
Activation Function LeakyReLLU Optimizer Adam
Weight Initialization LeCun Uniform [47] | Max Epochs 200

Table 1: Model and training hyperparameters used in training. We save the weights with the best loss during
the training process and employ early stopping.

4.1 Gaussian model

As a first example, we consider the Gaussian action with complex mass parameter
S(x) = %aoxz, 00 = A +iB. (16)
The CL dynamics with real noise is described by the system of equations,
X=Kx;+n, K, =—-Ax+ By, y =K, K, =-Ay - Bx. a7

The FPE admits a stationary solution [3, 26]
1
P(x,y) = Nexp [-ax” - By* = 2yxy] , N=—vaB - (18)
b
with the coefficients @ = A, 8 = A(1 +2A4%/B?),y = A?/B. This solution satisfies Eq. (11). With

this solution, the log derivatives of the probability distribution (18) sampled by the CL process can
be computed and the analytical score reads

Oxlog P(x,y) = 2ax — 2yy, dylog P(x,y) = =28y — 2yx. (19)
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Figure 1: Gaussian model with complex mass parameter oy = 1 +i: vector field V log P(x, y) and lines of
constant P(x, y) as given by the analytical results (18, 19) (left) and as learnt by the diffusion model (right).

As we see below, the learned score at the end of the backward process approximates this vector
field. It is important to note that this distribution and its derivatives are usually not available and in
particular not directly related to the CL drift (K, K), since the latter cannot be integrated. This is
easy to see, as 0y K, # 0xK,.

We have trained the diffusion model on data generated using CL dynamics, as explained above.
The resulting score at the end of the backward process is shown in Fig. 1 (right). This score can be
compared with the analytical score (19), shown on the left. Contour lines of constant P(x, y) are
included as well. We observe that the model manages to capture the score from the data. To make
this more quantitative, we have computed the four lowest nonzero moments, u,, = E[(x+iy)"] with
n =2,4,6,8. The exact results are y, = (n — 1)!!/0‘61/2 for even n. Since the theory is Gaussian,
all higher-order cumulants vanish. The results are shown in Table 2. Note that the diffusion model
learns from CL generated data, not from the exact distribution.

n | 2 4 6 8

re —im re —im re —im re —im

Exact 0.5 0.5 0 1.5 -3.75 3.75 -26.25 0
CL | 0.4986(7) 0.4990(7) | —0.0018(1) 1.494(5) | -3.75(2) 3.75(3) | -26.4(3) 0.20(3)
DM | 0497(1) 0.491(1) 0.021(1) 1.476(7) | -3.65(3) 3.78(4) | -26.3(1) 0.81(68)

Table 2: Gaussian model with complex mass parameter op = 1 + i: first four non-vanishing moments ,,,
as obtained from CL data and from diffusion model generated data, including exact values. Statistical errors
are computed by a bootstrap resampling of the dataset with 10° configurations using 100 bins.

4.2 Quartic model

We now consider the quartic model with a complex mass parameter [27]

1 1
S = EO’())C2 + 1/1)64,

Exact results can be obtained by a direct evaluation of the partition function,

z:/ﬁuaﬂﬂz,ﬁﬁﬁKJ@L (1)
() 4

o0 =A +iB. (20)
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Figure 2: Quartic model with parameters o9 = 1+i,4 = 1: solution P(x, y) of the FPE obtained by a double
expansion in Hermite functions [27] (left) and as learnt by the diffusion model (right).
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Figure 3: Distributions P(x,0) and P(0, y) created by collecting configurations during the CL process and
from the trained diffusion model, using 10® samples in each case. Other parameters as above.

where & = 0'3 /(84) and K, () is the modified Bessel function of the second kind. Subsequently,
moments u, = E[x"] are obtained by differentiating with respect to 0. Odd moments vanish.
Provided that 3A% — B? > 0, the CL process is contained in a strip —y_ < y < y_, with [27]

A B2
2
L PP A 22
- 2/1( 3A2) (22)

CL dynamics then yields the correct results [27].

We have trained the diffusion model as above. In this case, no analytical expression for P(x, y)
or the score is available. In Ref. [27] the FPE was solved by a double expansion in terms of
Hermite functions. The resulting stationary distribution is shown in Fig. 2 (left). The distribution
is strictly zero when |y| > y_ =~ 0.3029. The little ripples in the left plot are an artifact of the
expansion. Sampling from the trained diffusion model yields the distribution shown on the right.
Two cross sections of the distribution, P(x,0) and P(0, y), are shown in Fig. 3. We note that the
trained diffusion model manages to capture the two peaks characteristic of this model as well as the
boundary restrictions from the training data, with some small deviations visible.

The analytical score is not available in this case. In Fig. 4 we show the CL drift (left) and
the score at the end of the backward process, as learnt by the diffusion model (right). The two
vector fields are different, as they should be. Recall that the Langevin drift is used in the CL
equation with noise in the x direction only and no time-dependent coefficients, whereas the score is
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Figure 4: Drift in complex Langevin dynamics (left) and the score as learnt by the diffusion model, including
contour lines (right). These vector fields are different, as they should be. Parameters as above.

n | 2 4 6 8

re —im re re —im re —im

Exact | 0.428142 0.148010 | —0.060347 —0.100083 | —0.00934 0.19222 | 0.41578 —0.5923
CL | 0.4277(5) 0.1478(2) | -0.0597(6) —0.0991(6) | —0.010(1) 0.188(2) | 0.406(4) -0.57(1)
DM | 0.4267(6) 0.1459(2) | —0.0582(6) —0.0981(5) | —0.008(1) 0.188(2) | 0.400(5) -0.58(1)

oL
=

Table 3: As in Table 2, cumulants «,, for the quartic model with parameters oy = 1 +i,4 = 1.

used in the time-dependent stochastic equation with noise applied in both directions. Neverthless,
both processes yield (approximately) the same distribution, used for data generation. To make the
comparison quantitative, we have computed cumulants «,, from the numerically estimated moments
Mn, using the standard relations. The results are presented in Table 3. We observe good agreement.

5. Outlook

We have demonstrated the diffusion model’s ability to capture the distributions from data
generated by complex Langevin dynamics, using two simple models. The model reproduces
statistical properties of the data on which it is trained, as one would expect. The capability of
diffusion models to learn higher-order cumulants has also been shown in Ref. [40]. In the context
of CL dynamics, a diffusion model will not solve the sign problem when CL fails. However, the
score learnt by the diffusion model is not related to the drift in the CL process, but is instead an
approximation to the gradient of an effective action on the complexified space. This may open
up new avenues to analyse the properties of CL generated distributions on the complexified space,
which are worth exploring. Finally, there are no obstacles to extend this approach to two-dimensional
lattice field theories [37, 39] and use it to generate additional configurations.
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