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The Heatbath Algorithm is commonly used for sampling in local lattice field theories, but perform-
ing exact updates or sampling from the local density is challenging when dealing with continuous
variables. Heatbath methods rely on rejection-based sampling at each site, which can suffer from
low acceptance rates if the proposal distribution is not optimally chosen—a non-trivial task. In
this work, we propose a novel, straightforward approach for generating proposals at each lattice
site for the 𝜙4 and XY models using generative AI models. This method learns a conditional local
distribution, without requiring training samples from the target, conditioned on both neighboring
sites and action parameter values.
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1. Introduction

Lattice models in physics describe systems on a discrete grid, where configurations follow a
Boltzmann distribution characterized by a Hamiltonian 𝐻 (𝜙, 𝜆) or action 𝑠(𝜙, 𝜆). The statistical
properties of these lattices vary with parameters 𝜆, exhibiting significant changes near specific
values of 𝜆 known as critical regions, where phenomena like critical slowing down occur. In
these regions, traditional sampling methods like MCMC, while providing convergence guarantees,
become inefficient due to high autocorrelation times. Specialized algorithms, such as Swendsen-
Wang [1], Wolff [2, 3] address this but have limitations, particularly for continuous symmetries.
The Hamiltonian Monte Carlo (HMC) [4], which makes global MCMC updates, is considered the
state of the art for lattice QCD simulations. Recently, generative machine learning (ML) methods,
including normalizing flows [5] and diffusion models [6] have shown promise in efficiently sampling
lattice field theories, with successful applications in 𝜙4 [7–14] and gauge theory [15–25]. These
generative methods however aim to model the joint distribution of the entire lattice, which poses a
significant scalability challenge for learning-based approaches. In lattice community a well known
approach for sampling local lattice theories is the Heat Bath algorithm, which factorizes the lattice
distribution, allowing each lattice site to be sampled conditioned on its local neighboring sites. This
approach is particularly efficient for discrete systems like the Ising model, where only two possible
states exist. However, in continuous systems, this requires problem specific designs [26, 27] and
often requiring rejection-based methods. The difficulty of finding effective proposal distributions for
a generic continuous systems can lead to high rejection rates in Heatbath, increasing the simulation
cost. Moreover, at different regime of the action parameter, one may need to fine tune the proposal
distribution.

We present the Parallelizable Block Metropolis-within-Gibbs (PBMG) method for sampling
in local lattice models, offering an efficient proposal distribution for rejection-based Heatbath
algorithms. PBMG learns the local single-site distribution conditioned on neighboring sites and
the action parameter values. Once trained, the model can be used to sample the entire lattice
as in the Heatbath method. The target distribution is a simple one-dimensional distribution,
thus significantly improves the learning efficiency. Notably, PBMG does not require any training
samples from the target distribution. With a well-trained model, we can reduce the rejection rate
commonly encountered in Heatbath sampling. The PBMG operates within a Metropolis-within-
Gibbs framework, using ML model-generated proposals conditioned on neighboring sites as well
as action parameters. Thus PBMG are conditional generative models, e.g., conditional GMMs and
conditional NFs.

To validate the proposed approach, we apply it to 2-D lattices, namely, the XY model from
statistical Physics and the scalar 𝜙4 model from Lattice Field Theory.

2. Heatbath as Parallelizable Block Metropolis-within-Gibbs (PBMG)

In this section, we introduce the Heat Bath methods within a generative model framework,
which correspond to a Metropolis-within-Gibbs approach, using clear notation.

Consider an 𝑁-dimensional probability distribution 𝑝(𝜙1, 𝜙2, . . . , 𝜙𝑁 ). For a lattice, 𝑁 is the
number of lattice sites and 𝜙𝑖 is the random variable at site 𝑖. We partition these sites into 𝐺
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partitions such that the distribution of a site 𝑖 in a partition 𝑔, conditioned on all sites 𝑗 ∉ 𝑔, is
independent of all sites 𝑖′ ∈ 𝑔 \ 𝑖.

For implementing MCMC in general state-spaces, one requires to construct a Markov chain
transition kernel 𝑝(𝜙𝑖 |𝜙 𝑗≠𝑖) that keeps the target distribution 𝑝(𝜙1, 𝜙2, . . . , 𝜙𝑁 ) invariant, and is
ergodic for this distribution. Such kernels can also be combined via composition. Keeping this in
mind, let 𝐾𝑖 be a transition kernel that updates the site 𝑖 ∈ 𝑔, keeping all other sites of the lattice
the same. Then the combined kernel that changes all the sites in the partition 𝑔 is

𝐾𝑔 =
∏
𝑖∈𝑔

𝐾𝑖 (1)

and the overall kernel for updating all the sites in a lattice is

𝐾 =
∏
𝑔

𝐾𝑔 . (2)

The advantage of partitioning is that all the sites in the same partition can be sampled simultaneously,
thereby making the process faster. Moreover, each kernel 𝐾𝑖 need not be conditioned on all the sites
outside the partition 𝑔, but only a small number of sites in a local neighbourhood of the site 𝑖.

Every site-kernel𝐾𝑖 for each 𝑖 ∈ 𝑔 and for every partition 𝑔 is a Metropolis-within-Gibbs kernel,
which means that each site-kernel 𝐾𝑖 is a Gibbs kernel with a Metropolis-Hastings accept-reject
step.

Let 𝝓−𝑔 denote the set of random variables at all the lattice sites excluding the ones in the
partition 𝑔 and 𝝍 denote given lattice parameters (e.g., temperature, coupling parameters). Let us
define 𝑞(𝜙 (𝑡 )

𝑖
|𝝓−𝑔,𝝍; 𝜽) as the parametric proposal distribution, parameterized by 𝜽 and conditioned

on 𝝓−𝑔 and 𝝍. Then, the acceptance probability 𝛼𝐾𝑖
for any site-kernel 𝐾𝑖 ∀ 𝑖 ∈ 𝑔 is

𝛼𝐾𝑖
=
𝑝(𝜙 (𝑡+1)

𝑖
|𝝓−𝑔,𝝍)

𝑝(𝜙 (𝑡 )
𝑖

|𝝓−𝑔,𝝍)
·
𝑞(𝜙 (𝑡 )

𝑖
|𝜙 (𝑡+1)
𝑖

, 𝝓−𝑔,𝝍; 𝜽)
𝑞(𝜙 (𝑡+1)

𝑖
|𝜙 (𝑡 )
𝑖
, 𝝓−𝑔,𝝍; 𝜽)

(3)

We design a proposal such that,

𝑞(𝜙 (𝑡+1)
𝑖

|𝜙 (𝑡 )
𝑖
, 𝝓−𝑔,𝝍; 𝜽) = 𝑞(𝜙 (𝑡+1)

𝑖
|𝝓−𝑔,𝝍; 𝜽) (4)

The maximum acceptance rate possible i.e., an acceptance rate equal to 1 will be achieved
when 𝑞(𝜙 (𝑡 )

𝑖
|𝝓−𝑔,𝝍; 𝜽) is exactly the same as 𝑝(𝜙 (𝑡 )

𝑖
|𝝓−𝑔,𝝍). This reduces our goal to design (or

learn) a proposal that could sample from the true conditional distribution as closely as possible. In
order to achieve this goal, we use methods like Normalizing Flows and Gaussian Mixture Models
in generative machine learning. In the next two sections, we apply the PBMG method to the XY
model and the Scalar 𝜙4 theory in 2D.

3. Application to the XY Model

The local Hamiltonian of the the XY model for (𝑖, 𝑗)th component 𝜙𝑖, 𝑗 of the lattice vector 𝝓
is

𝐻 (𝜙𝑖, 𝑗) = −
[
cos(𝜙𝑖, 𝑗 − 𝜙𝑖+1, 𝑗) + cos(𝜙𝑖, 𝑗 − 𝜙𝑖, 𝑗+1)

+ cos(𝜙𝑖, 𝑗 − 𝜙𝑖−1, 𝑗) + cos(𝜙𝑖, 𝑗 − 𝜙𝑖, 𝑗−1)
]

(5)
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We see that the Hamiltonian of the (𝑖, 𝑗)th component depends only on the components of the four
nearest neighbours denoted by 𝑛(𝑖, 𝑗) = {(𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1)}. Therefore the
conditional distribution of 𝜙𝑖, 𝑗 given the four nearest neighbour components and temperature is

𝑝
(
𝜙𝑖, 𝑗 |{𝜙𝑙,𝑚 : (𝑙, 𝑚) ∈ 𝑛(𝑖, 𝑗)}, 𝑇

)
= 𝑝(𝜙𝑖, 𝑗 |v𝑖, 𝑗) ∝ 𝑒−

𝐻 (𝜙𝑖, 𝑗 )
𝑇 (6)

The above conditional distribution is our target distribution. Here, v𝑖, 𝑗 = (𝜙𝑖+1, 𝑗 , 𝜙𝑖, 𝑗+1, 𝜙𝑖−1, 𝑗 , 𝜙𝑖, 𝑗−1, 𝑇)
is the 5x1 condition vector corresponding to the site (𝑖, 𝑗) which consists of the four nearest neigh-
bour components and the temperature. For this model, we have divided the lattice into two partitions
𝑔0 and 𝑔1.

𝑔𝑘 = {(𝑖, 𝑗) : (𝑖 + 𝑗)%2 = 𝑘}; 𝑘 = 0, 1 (7)

We use Normalizing Flows to model the proposal distribution 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽). Using the change
of variables formula,

𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) = 𝑝𝑍
(
𝑓 −1(𝜙𝑖, 𝑗 ; 𝜽𝑅) |v𝑖, 𝑗 ; 𝜽𝐵

) �����det

(
𝜕 𝑓 −1(𝜙𝑖, 𝑗 ; 𝜽𝑅)

𝜕𝜙𝑖, 𝑗

)����� (8)

where, 𝑝𝑍 (𝑧 |v𝑖, 𝑗 ; 𝜽𝐵) is the base distribution and 𝑓 (𝑧; 𝜽𝑅) is the invertible transformation used
in the Normalizing Flow. Here, 𝜽 = {𝜽𝑩, 𝜽𝑹}. We use Rational Quadratic Splines (RQS) as the
transform 𝑓 .

The loss function used in the training procedure is the expected value of the KL divergence
between the proposal 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) and the target 𝑝(𝜙𝑖, 𝑗 |v𝑖, 𝑗). The Monte Carlo approximation
can be used to estimate the KL divergence as follows

L ≈ 1
𝑛
· 1
𝑁

𝑛∑︁
𝑟=1

𝑁∑︁
𝑘=1

[log 𝑝𝑍 (𝑧𝑘 | (v𝑖, 𝑗)𝑟 ; 𝜽𝐵) + log | det 𝐽 𝑓 (𝑧𝑘 | (v𝑖, 𝑗)𝑟 ; 𝜽𝑅) |−1

− log 𝑝
(
𝑓 (𝑧𝑘 ; 𝜽𝑅) | (v𝑖, 𝑗)𝑟

)
] (9)

For training this model we generate training data v𝑖, 𝑗 from 𝑝𝑣 (v𝑖, 𝑗) i.e. v𝑖, 𝑗 from 𝑝𝑣 (v𝑖, 𝑗) =

Unif( [0, 2𝜋]4 × [𝑇1, 𝑇2]), where 𝑇2 − 𝑇1 is the training range for temperatures. For further details
on the proposal model, model architecture and the training/inference process for XY model, please
refer to Appendix 6.

4. Application to the 𝜙4 Theory

The local action for 𝜙4 theory for lattice site (𝑖, 𝑗) can be written as

𝑆𝑙𝑜𝑐 (𝜙𝑖, 𝑗 , 𝜆, 𝑚2, {𝜙𝑙,𝑚 : (𝑙, 𝑚) ∈ 𝑛(𝑖, 𝑗)}) = 𝑆𝑙𝑜𝑐 (𝜙𝑖, 𝑗 , 𝜆, 𝑚2, 𝜅𝑖, 𝑗) (10)

=

(
𝑚2 + 4

)
𝜙2
𝑖, 𝑗 + 𝜆𝜙4

𝑖, 𝑗 − 2𝜙𝑖, 𝑗𝜅𝑖, 𝑗 (11)

where 𝜅𝑖, 𝑗 = 𝜙𝑖+1, 𝑗 + 𝜙𝑖, 𝑗+1 + 𝜙𝑖−1, 𝑗 + 𝜙𝑖, 𝑗−1.
The conditional distribution of the lattice site (𝑖, 𝑗) can be written as

𝑝
(
𝜙𝑖, 𝑗 |𝜆, 𝑚2, 𝜅𝑖, 𝑗) = 𝑝

(
𝜙𝑖, 𝑗 |v𝑖, 𝑗) ∝ 𝑒−𝑆𝑙𝑜𝑐 (𝜙𝑖, 𝑗 ,v𝑖, 𝑗 ) (12)
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where, v𝑖, 𝑗 = (𝜆, 𝑚2, 𝜅𝑖, 𝑗) is the condition vector for the distribution. For 𝜙4 theory as well,
we have divided the lattice into the same two partitions 𝑔0 and 𝑔1, where

𝑔𝑘 = {(𝑖, 𝑗) : (𝑖 + 𝑗)%2 = 𝑘}, 𝑘 = 0, 1 (13)

We construct the proposal distribution for the scalar 𝜙4 theory by using a Gaussian Mixture
Model with six Gaussian components. The proposal distribution parameterized by 𝜽 , can be written
as

𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) =
6∑︁
𝑘=1

𝜋𝑘 (v𝑖, 𝑗 ; 𝜽𝑘)N (𝜙𝑖, 𝑗 |𝜇𝑘 (v𝑖, 𝑗 ; 𝜽𝑘), 𝜎𝑘 (v𝑖, 𝑗 ; 𝜽𝑘)) (14)

where 𝜇𝑘 , 𝜎𝑘 𝜋𝑘 are the mean, standard deviation and mixing coefficients of the 𝑘 𝑡ℎ Gaussian
distribution, and 𝜽 = {𝜽𝑘}6

𝑘=1.
The training procedure of PBMG-𝜙4 is similar to that of PBMG-XY. The loss function used in

the training procedure is the expected value of the KL divergence between the proposal 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽)
and the target 𝑝(𝜙𝑖, 𝑗 |v𝑖, 𝑗)

L ≈ 1
𝑛

𝑛∑︁
𝑟=1

[
1
𝑁

𝑁∑︁
𝑘=1

[
log 𝑞((𝜙𝑖, 𝑗)𝑘 | (v𝑖, 𝑗)𝑟 ; 𝜽) − log 𝑝

(
(𝜙𝑖, 𝑗)𝑘 | (v𝑖, 𝑗)𝑟 )

]
+ ∥𝝅

(
(v𝑖, 𝑗)𝑟 ; 𝜽

)
∥
]

(15)

For further details on the architecture and the training/inference process for 𝜙4 theory, please
refer to Appendix 6.

5. Results for PBMG

In this section, we assess the performance of the PBMG model in comparison to the heatbath
method for both the 𝜙4 and XY models in 2D. For the 𝜙4 model, we use the standard heatbath
method, where samples are drawn from a Gaussian distribution, followed by a rejection step to
account for the 𝜙4 interaction terms. In the case of the XY model, we use a uniform distribution
as the proposal for the rejection step. We compute and compare the acceptance rates between the
PBMG and heatbath algorithms. Note that the acceptance rate with rejection sampling differs from
that in Metropolis-within-Gibbs sampling. To establish equivalency, we define the acceptance rate
for Heatbath algorithm in the following manner.

If 𝑛(𝑘 )
𝑖

represents the number of trials needed to obtain one successful update at site 𝑖 for the
𝑘th configuration in the ensemble, then the total number of attempts 𝐴 for the entire configuration
is given by

𝐴𝑘 =

𝑁∑︁
𝑖=1

𝑛
(𝑘 )
𝑖

where 𝑁 is the total number of lattice sites. The total number of successful updates for a configu-
rations is equal to N.

We define the acceptance rate 𝑅 for the 𝑘th configuration as: 𝑅𝑘 =
success updates
total attempts = 𝑁

𝐴𝑘

5
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For PBMG, the acceptance rate is straightforward to compute, as it simply corresponds to the
Metropolis-Hastings acceptance rate.

The acceptance rate directly reflects the computational cost of our simulation algorithm. In
Figure 1, we compare the acceptance rates of both methods for the XY model and 𝜙4 theory.

(a) (b)

Figure 1: The acceptance rate for both PBMG and Heatbath Algorithm, for lattice size of 64 × 64; a) Phi4
Theory, b) XY Model.

For the 𝜙4 theory, we generate samples using both the PBMG and heatbath algorithms for 𝜆
values in the range (1.6, 2.1), covering both sides of the phase transition. As shown in Figure 1a,
the acceptance rate is approximately 98%. For the XY model, we compare the acceptance rate
across different temperature values in the range (0.5, 2.0), as illustrated in Figure 1b. We observe
that the acceptance rate for the PBMG model is close to 90%. In both the XY and 𝜙4 models, the
acceptance rate remains nearly constant across the parameter (𝑇/𝜆) values.

6. Conclusion

We have proposed a generative-based heatbath sampler for local lattice systems with continuous
degrees of freedom. Our model, PBMG, is straightforward to train as it learns a one-dimensional
distribution and can serve as a proposal for a heatbath sampler. A key advantage of this approach is
its conditioning on neighboring sites and the action or Hamiltonian parameters, without requiring
any training samples from the target distribution. Unlike traditional methods that may need different
proposals for different ranges of the action parameter, the PBMG model offers a flexible, single
proposal mechanism for updating all lattice sites while covering a broad range of action parameter
values. Extending this improved heatbath approach to gauge theory could be an exciting direction
for future research.
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Appendix A: PBMG for XY model

Modeling the Proposal distribution

We use Normalizing Flows to model the proposal distribution 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽). 𝑝𝑍 (𝑧 |v𝑖, 𝑗 ; 𝜽𝐵)
is the base distribution and 𝑓 (𝑧; 𝜽𝑅) is the invertible transformation used in the Normalizing Flow.
Here, 𝜽 = {𝜽𝑩, 𝜽𝑹}. The condition vector that is input to all the neural networks is v𝑖, 𝑗 .

Using the change of variables formula,

𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) = 𝑝𝑍
(
𝑓 −1(𝜙𝑖, 𝑗 ; 𝜽𝑅) |v𝑖, 𝑗 ; 𝜽𝐵

) �����det

(
𝜕 𝑓 −1(𝜙𝑖, 𝑗 ; 𝜽𝑅)

𝜕𝜙𝑖, 𝑗

)����� (16)

We use Rational Quadratic Splines (RQS) as the transform 𝑓 .

Training and Inference Procedure

The loss function used in the training procedure is the expected value of the KL divergence
between the proposal 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) and the target 𝑝(𝜙𝑖, 𝑗 |v𝑖, 𝑗) i.e., the true conditional distribution
over all possible values of the condition vector v𝑖, 𝑗 during training. The first four components of
v𝑖, 𝑗 lie in the interval [0, 2𝜋] and the last component 𝑇 ∈ [0.13, 2.05]. We will, therefore, sample
v𝑖, 𝑗 from 𝑝𝑣 (v𝑖, 𝑗) = Unif( [0, 2𝜋]4 × [0.13, 2.05]) to calculate the expectation.

L = Ev𝑖, 𝑗∼𝑝𝑣 (v𝑖, 𝑗 )
[
E𝑧∼𝑝𝑍 (𝑧 |v𝑖, 𝑗 ;𝜽𝐵 )

[
log 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) − log 𝑝(𝜙𝑖, 𝑗 |v𝑖, 𝑗)

] ]
(17)

The Monte Carlo approximation can be used to estimate the above expectation as follows

L ≈ 1
𝑛
· 1
𝑁

𝑛∑︁
𝑟=1

𝑁∑︁
𝑘=1

[log 𝑝𝑍 (𝑧𝑘 | (v𝑖, 𝑗)𝑟 ; 𝜽𝐵) + log | det 𝐽 𝑓 (𝑧𝑘 | (v𝑖, 𝑗)𝑟 ; 𝜽𝑅) |−1

− log 𝑝
(
𝑓 (𝑧𝑘 ; 𝜽𝑅) | (v𝑖, 𝑗)𝑟

)
] (18)

We sample from 𝑝𝑣 (v𝑖, 𝑗) to generate 10,000 samples of v𝑖, 𝑗 and use this as the training set. We use
the Adam optimizer with default hyperparameters and a cosine decay schedule for the learning rate
with an initial learning rate of 0.0005 and 20,000 decay steps. We perform validation by calculating
the average acceptance rate for 24 random temperatures in the range [0.13, 2.05] and stop training
when we achieve an average acceptance rate of around 85%. Our model gets trained quickly, taking
less than an hour to train on a low-end single GPU machine.

The procedure for MCMC sampling using PBMG-XY is briefed in the algorithm given below.
Here, V𝑔 = [v𝑖, 𝑗] (𝑖, 𝑗 ) ∈𝑔.

Appendix B: PBMG for 𝜙4 model

Modeling the Proposal Distribution: PBMG-𝜙4

We construct the proposal distribution for the scalar 𝜙4 theory by using a Gaussian Mixture
Model with six Gaussian components. The proposal distribution parameterized by 𝜽 , can be written
as

𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽) =
6∑︁
𝑘=1

𝜋𝑘 (v𝑖, 𝑗 ; 𝜽𝑘)N (𝜙𝑖, 𝑗 |𝜇𝑘 (v𝑖, 𝑗 ; 𝜽𝑘), 𝜎𝑘 (v𝑖, 𝑗 ; 𝜽𝑘)) (19)
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where 𝜇𝑘 , 𝜎𝑘 𝜋𝑘 are the mean, standard deviation and mixing coefficients of the 𝑘 𝑡ℎ Gaussian
distribution, and 𝜽 = {𝜽𝑘}6

𝑘=1. The parameters 𝜇𝑘 , 𝜎𝑘 𝜋𝑘 are a function of the condition vector
v𝑖, 𝑗 = (𝜆, 𝑚2, {𝜙𝑙,𝑚 : (𝑙, 𝑚) ∈ 𝑛(𝑖, 𝑗)}) through a neural network parametrized by 𝜽𝑘 which are
learnt using a suitable loss function. The input to the 𝑘 𝑡ℎ neural network is the condition vector
v𝑖, 𝑗 , and the outputs are the parameters (𝜇𝑘 , log(𝜎𝑘), 𝜋𝑘).

The architectures of all six neural networks are the same, with the only difference lying in the
initialization of the network parameters. Each neural network consists of one hidden layer with 500
neurons and a ReLU activation function. The neurons in the final layer use linear activation. The
value of log(𝜎𝑘) > 1 is clipped to 1. Since

∑
𝑘 𝜋𝑘 = 1, the networks output logit values that are

converted to 𝜋𝑘 by applying softmax.

Training and Inference Procedure

The training procedure of PBMG-𝜙4 is similar to that of PBMG-XY. The loss function used in
the training procedure is the expected value of the KL divergence between the proposal 𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽)
and the target 𝑝(𝜙𝑖, 𝑗 |v𝑖, 𝑗) i.e., the true conditional distribution over all possible values of the
condition vector v𝑖, 𝑗 during training, along with an 𝐿2 regularization term. The effect of the
regularization term is that the mixing coefficients remain close to each other, which, in turn,
facilitates accurate training. We train our model for the following range of the parameters: 𝜆 ∈
[2.5, 15], 𝑚2 ∈ [−8, 0] and 𝜅𝑖, 𝑗 ∈ [0, 3]. We will, therefore, sample v𝑖, 𝑗 from 𝑝𝑣 (v𝑖, 𝑗) =

Unif( [2.5, 15] × [−8, 0] × [0, 3]) to calculate the expectation. Here, 𝝅(v𝑖, 𝑗 ; 𝜽) = [𝜋𝑘 (v𝑖, 𝑗 ; 𝜽𝑘)]6
𝑘=1

and ∥.∥ represents the 𝐿2 norm.

L = Ev𝑖, 𝑗∼𝑝𝑣 (v𝑖, 𝑗 )

[
E𝜙𝑖, 𝑗∼𝑞 (𝜙𝑖, 𝑗 |v𝑖, 𝑗 ;𝜽 )

[
log

𝑞(𝜙𝑖, 𝑗 |v𝑖, 𝑗 ; 𝜽)
𝑝
(
𝜙𝑖, 𝑗 |v𝑖, 𝑗)

]
+ ∥𝝅(v𝑖, 𝑗 ; 𝜽)∥

]
(20)

And the Monte Carlo approximation to the above expression is

L ≈ 1
𝑛

𝑛∑︁
𝑟=1

[
1
𝑁

𝑁∑︁
𝑘=1

[
log 𝑞((𝜙𝑖, 𝑗)𝑘 | (v𝑖, 𝑗)𝑟 ; 𝜽) − log 𝑝

(
(𝜙𝑖, 𝑗)𝑘 | (v𝑖, 𝑗)𝑟 )

]
+ ∥𝝅

(
(v𝑖, 𝑗)𝑟 ; 𝜽

)
∥
]

(21)

We sample from 𝑝𝑣 (v𝑖, 𝑗) to generate 17,500 samples of v𝑖, 𝑗 and use this as the training set. We
use the Adam optimizer with a learning rate of 0.0001 and default hyperparameters. We perform
validation by calculating the average acceptance rate for 50 random sets of parameters (𝜆, 𝑚2)
where 𝜆 ∈ [2.5, 15] and 𝑚2 ∈ [−8, 0], and stop training when we achieve an average acceptance
rate of around 98%. PBMG-𝜙4 also gets trained very quickly taking only a few minutes to train on
a low-end single GPU machine.

The procedure for MCMC sampling using PBMG-𝜙4 is exactly the same as that of PBMG-XY.
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