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The Field-Transformation Hybrid Monte-Carlo (FTHMC) algorithm potentially mitigates the issue
of critical slowing down by combining the HMC with a field transformation, originally proposed by
Lüscher and motivated as trivializing the theory. For the transformation, we use a single invertible
discrete smearing step inspired by the Wilson flow but which resembles a Jacobian-computable
generalisation of the stout smearing step. This is applied to a system with Iwasaki gauge fields and
2+1 Domain-Wall fermions. We have studied the effect of different smearing parameter values
on autocorrelation times of Wilson-flowed energies with different flow time. We have found a
reduction of exponential autocorrelation times for infra-red observables such as Wilson flowed
energy densities and topological charge densities when a larger value of the smearing parameter is
used. The autocorrelation times of local observables are computed using an approach akin to the
master-field technique, allowing us to estimate the effect of the field transformation with different
parameters based on a small number of configurations.
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1. Introduction

In Ref. [1], Lüscher proposed an algorithm to mitigate the issue of critical slowing down using
a transformation of gauge fields. In this algorithm, a gauge field, 𝑈, is substituted by another field,
𝑉 , using a diffeomorphism on a space of gauge fields as 𝑈 = F𝑡 (𝑉) where 𝑡 is a parameter of the
transformation. Under this change of variable,

𝑍 =

∫
D𝑈𝑒−𝑆 (𝑈) =

∫
D𝑉Det[F∗(𝑉)] 𝑒−𝑆 (F(𝑉 ) ) =

∫
D𝑉 𝑒−𝑆𝐹𝑇 (𝑉 )

so that we have a new action for the field 𝑉 , namely

𝑆𝐹𝑇 = 𝑆(F𝑡 (𝑉)) − ln Det F𝑡∗(𝑉).

In Ref. [1], it is shown that there exists a perfect trivializing map F𝑡 such that

ln Det F𝑡∗(𝑉) |𝑡=1= 𝑆(F𝑡 (𝑉)) + constant.

For a perfect trivializing map, we have 𝑆𝐹𝑇 = 0 for 𝑉 , and so 𝑉 is distributed uniformly. With a
trivialized action, all modes of observables evolve at the same rate, reducing their autocorrelation
times. These ideal maps can be obtained as a solution to ¤𝑈𝑡 = 𝑍𝑡 (𝑈𝑡 )𝑈𝑡 where 𝑍𝑡 is a su(3)-field.

In this study, we use only a single discrete step as an approximation to the perfect trivializing
map [2–4] inspired by Wilson flow and stout smearing. The numerical integration in Wilson flow
is replaced by a single the Euler step on each gauge link on the lattice:

𝑈 (𝑥, 𝜇) → E𝑥,𝜇 (𝑦, 𝜈) =
{
𝑒𝑍𝑡 (𝑈) (𝑥,𝜇)𝑈 (𝑥, 𝜇) if (𝑦, 𝜈) = (𝑥, 𝜇)
𝑈 (𝑦, 𝜈) otherwise.

(1)

Here,

𝑍𝑡 (𝑈𝑡 ) (𝑥, 𝜇) = P(𝑃𝜇𝜈 (𝑥, 𝜇)) ≡
1
2
(𝑃𝜇𝜈 (𝑥, 𝜇) − 𝑃𝜇𝜈 (𝑥, 𝜇)†) −

1
6

tr [𝑃𝜇𝜈 (𝑥, 𝜇) − 𝑃𝜇𝜈 (𝑥, 𝜇)†]

𝑃𝜇𝜈 (𝑥, 𝜇) =
∑︁
𝜈≠±𝜇

𝜌𝜇,𝜈𝑈 (𝑥, 𝜈)𝑈 (𝑥 + 𝜈̂, 𝜇)𝑈 (𝑥 + 𝜇̂, 𝜈)†𝑈 (𝑥, 𝜇)†. (2)

This gives a numerically cheap transformation which we might hope leads to a practical gain in
computer time. The step size of the Euler step prescribed in Eq. 1 is absorbed into 𝜌𝜇,𝜈 ≡ 𝜌 in
Eq. 2, and its effect on autocorrelation is investigated. To make this technique suitable for computer
simulation, a single link update in Eq. 1 is performed at even and odd sites and in each direction 𝜇

only once. All links of a given polarisation on even or odd sites are updated in parallel. Then, the
overall link update consists of 8 independent updates and is more akin to familiar stout smearing.

Compared to recent approaches seeking to completely trivialize the gauge theory and apply
direct sampling schemes [5], this approach remains more similar to Lüscher’s HMC based algorithm
in structure while taking pains to minimize the cost of the field transformation even if the making
this transformation more approximate. The motivation is that rather than seeking to map fields
from the trivial distribution in the strong coupling limit, we use the local averaging implicit in link
smearing to make a wavelength-dependent transformation (in particular active in the ultraviolet)
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from our integration variables to our gauge field. Because the integration variable momenta are
Gaussian distributed, this wavelength-dependent transformation can rescale the changes made to
the physical gauge field differentially between the ultraviolet and infrared degrees of freedom,
potentially changing the relative rate of evolution and avoiding large forces arising in the ultraviolet
that might otherwise limit the infrared evolution of the gauge field.

2. Simulation Details

This numerical experiment is conducted on a lattice of size 324 with 𝛽 = 2.37 and with 2 + 1
dynamical Domain-Wall fermions of mass 𝑚𝑙 = 0.0047, 𝑚𝑠 = 0.0186. We have performed several
simulations with different HMC parameters, such as different 𝜌 values of 0.1, 0.112, 0.124, different
gauge step sizes, 𝛿𝜏𝐺 = 1/48, 1/96, and different fermion step sizes 𝛿𝜏𝐹 = 1/24, 1/16, 1/12, 1/8.
The nonzero value for 𝜌 indicates the use of field transformation in the HMC algorithm and will
be referred to as FTHMC. The algorithm with 𝜌 = 0 reduces to the usual HMC algorithm. In the
following, we focus on the runs with different 𝜌 and 𝛿𝜏𝐺 but with fixed 𝛿𝜏𝐹 = 1/24 and trajectory
length 𝜏 = 1. Table 1 collects the total number of thermalized configurations from each run. These
simulations are carried out on Frontier and Andes at Oak Ridge National Laboratory.

𝜌 0.0 0.1 0.112 0.124
𝛿𝜏𝐺 = 1/48 233 230 188 230
𝛿𝜏𝐺 = 1/96 401 232 229 229
𝛿𝜏𝐺 = 1/144 - 230 - -

Table 1: The number of trajectories for each ensemble after thermalization

To see how reasonable the Monte Carlo (MC) chains are, the difference in the total simulation
Hamiltonian between adjacent configurations in the chain, 𝑑𝐻, has been computed. The averages
of 𝑑𝐻 over MC chains are computed and summarized in Tab. 2. We have checked that the Creutz
relation ⟨𝑒−Δ𝐻⟩ = 1 is satisfied within statistics.

𝜌 0.0 0.1 0.112 0.124
𝛿𝜏𝐺 = 1/48 0.026(6) 0.006(6) 0.009(5) 0.03(1)
𝛿𝜏𝐺 = 1/96 0.015(6) 0 ± 0.009 0.009(8) 0.017(7)
𝛿𝜏𝐺 = 1/144 - 0 ± 0.008 - -

Table 2: ⟨𝑑𝐻⟩ for different runs based on configurations with Metropolis step. 𝛿𝜏𝐹 is fixed to 1/48.

3. Measurements

As a first observable, we computed the plaquette. Figure 1 shows histories of plaquette values
evaluated on each configuration from MC chains generated using the HMC and FTHMC algorithms.
Both chains begin with a hot configuration. These MC chains are both observed to thermalize, as
indicated by plaquette approaching to its expected value, which in this case is 0.6388238(37), taken
from Ref. [6].
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Figure 1: The plot of plaquette value vs. config-
uration index for HMC algorithm (orange line) and
FTHMC algorithm (blue line). The horizontal red
line indicates the expected value of 0.6388238(37)
for this ensemble [6].
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FTHMC ( G = 1/96, = 0.112)
HMC

Figure 2: Autocorrelation coefficient (ACC) as a
function of 𝑡 for Wilson-flowed energy E16, evalu-
ated using the standard volume-averaged autocovari-
ance Γ (𝑉 ) (𝑡). This conventional estimator of ACC
exhibits a large error. We will introduce an improved
local autocorrelation approach.

Another set of observables measured in this study is Wilson flowed energy with different
flow time 𝜏𝑊 = 4, 8, 12, 16. The flowed energy with longer flow time couples more strongly
to slower mode and has a longer autocorrelation time, making it suitable for discerning different
algorithms based on their effect on autocorrelation. Histories of some flowed energy on thermalized
configurations from different MC chains are shown in Fig. 3. As can be seen from these figures, the
value of 𝜏2

𝑊
𝐸 (𝜏𝑊 ) fluctuates wildly. Determination of the central values as well as identification

of repeated cycles are hard. This makes it difficult to calculate their autocorrelation times.

4. Autocorelation

The autocorrelation of the flowed energy is considered in this study. When we measure an
observable 𝐴(𝑥) on each configuration in the MC chain, we obtain a sequence of measurements
{𝑎𝑖 (𝑥)}𝑇𝑖=1 where 𝑇 is the length of a finite Markov chain. We write its volume average using
double angle brackets as ⟪𝐴⟫ = (1/𝑉)∑𝑥 𝐴(𝑥) where 𝑉 is the lattice volume. By averaging over
statistically independent and infinitely many-times repeated simulations or, equivalently, infinite
MC chain, the expectation value of 𝐴(𝑥) can be computed: 𝑎 ≡ ⟨𝑎𝑖 (𝑥)⟩ = ⟨⟪𝐴⟫⟩. We have
introduced an abbreviation for the expectation value 𝑎. In doing so, we have used wide-sense
stationarity (WSS) for our HMC algorithms to eliminate the subscript 𝑖 for configurations in the
chain. The last equality follows from translational invariance. For ⟪𝐴⟫, we consider the volume
autocovariance function, defined as Γ𝑉 (𝑡) = ⟨⟪𝑎𝑖⟫⟪𝑎𝑖+𝑡⟫⟩ . Then, the autocorrelation coefficient is
defined as the ratio 𝜌𝑉 (𝑡) = Γ𝑉 (𝑡)/Γ𝑉 (0). As 𝑇 is finite here, we only estimate these expectation
values. The estimators are defined as appropriate averages over the finite MC chain. For example,
for Γ𝑉 (𝑡), we use

Γ̄𝑉 (𝑡) = 1
𝑇 − 𝑡

𝑇−𝑡∑︁
𝑖=1

(⟪𝑎𝑖⟫ − ⟪𝑎̄⟫) (⟪𝑎𝑖+𝑡⟫ − ⟪𝑎̄⟫).

Figure 2 shows the estimated autocorrelation function based on the above formula.
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Figure 3: Comparison of Wilson flowed energy with different 𝜌 values for different flow time (column) and
𝛿𝜏𝐺 = 1/48, 1/96 (row). The fluctuation is large so that estimation of ACC is difficult.

The error on this plot is estimated using Madras-Sokal Approximation [7]:

⟨𝛿𝜌̄ (𝑉 ) (𝑡)2⟩ ≃ 1
𝑁

𝑡+Λ∑︁
𝑘=1

[
𝜌̄ (𝑉 ) (𝑘 + 𝑡) + 𝜌̄ (𝑉 ) (𝑘 − 𝑡) − 2𝜌̄ (𝑉 ) (𝑘) 𝜌̄ (𝑉 ) (𝑡)

]
.

Here, Λ is set to 100, as Λ ≥ 100 gives a reasonable estimate of the error [7].

4.1 Master-Field Technique

The volume autocorrelation coefficient shown in Fig. 2 suffers from a large error and does not
reveal any information about autocorrelation of the volume average. To obtain a clearer signal, a
local observable 𝐴(𝑥) is considered. More specifically, we considered the vacuum-subtracted local
observable 𝐴′(𝑥) = 𝐴(𝑥) − ⟪𝐴⟫ to reduce the bias of estimating Γ𝑥 (𝑡) = ⟨(𝑎𝑖 (𝑥) − 𝑎) (𝑎𝑖+𝑡 − 𝑎)⟩.

Note 𝜇 = ⟨𝐴′(𝑥)⟩ = 𝑎 − 𝑎 = 0 so that

Γ′
𝑥 (𝑡) = ⟨(𝑎′𝑖 (𝑥) − 𝜇) (𝑎′𝑖+𝑡 (𝑥) − 𝜇)⟩ = ⟨𝑎′𝑖 (𝑥)𝑎′𝑖+𝑡 (𝑥)⟩

= ⟨(𝑎𝑖 (𝑥) − ⟪𝑎𝑖⟫) (𝑎𝑖+𝑡 (𝑥) − ⟪𝑎𝑖+𝑡⟫)⟩ ≡ ⟨O𝑖
𝑡 (𝑥)⟩

is an unbiased estimator of autocovariance function of 𝐴′(𝑥). Here, we introduced abbreviation
O𝑖
𝑡 (𝑥) ≡ (𝑎𝑖 (𝑥) − ⟪𝑎𝑖⟫) (𝑎𝑖+𝑡 (𝑥) − ⟪𝑎𝑖+𝑡⟫), treating it as a random variable over statistically inde-

pendent MC chains. As O𝑖
𝑡 (𝑥) is an local observable, we can use stochastic locality to increase

the statistics for Γ′
𝑥 (𝑡) and obtain the estimate with a smaller statistical error [8]. The master-field

estimator for O𝑖
𝑡 (𝑥) is

⟪O𝑖
𝑡⟫ ≡

1
𝑉

∑︁
𝑥

O𝑖
𝑡 (𝑥).

The deviation of this estimator from the field-theoretic expectation value 𝑂𝑡 ≡ ⟨O𝑖
𝑡 (𝑥)⟩ is of the

order O(𝑉−1/2) [8]. We can further increase the statistics by summing over the index 𝑖:

Ō𝑡 (𝑥) ≡
1

𝑇 − 𝑡

𝑇−𝑡∑︁
𝑖=1

O𝑖
𝑡 (𝑥).
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The covariance of ⟪Ō𝑡⟫ with different simulation time separation is given by [8]

Cov[⟪Ō𝑠⟫, ⟪Ō𝑡⟫] ≡ ⟨[⟪Ō𝑠⟫ − ⟨O𝑠⟩] [⟪Ō𝑡⟫ − ⟨O𝑡⟩]⟩

=
1
𝑉

∑︁
𝑦

⟨[Ō𝑠 (𝑦) − ⟨O𝑠⟩] [Ō𝑡 (0) − ⟨O𝑡⟩]⟩ ≡
1
𝑉

∑︁
𝑦

𝐶𝑠𝑡 (𝑦).

Evaluation of this requires estimation of 𝐶𝑠𝑡 (𝑦) for all spatial separation 𝑦, which is not feasible.
In exchange for a systematic error of O(𝑒−𝑅/𝜉 ) with 𝜉 some characteristic length for correlation of
Ō𝑡 at large distance, we can approximate the covariance [8] by truncating the sum over lattice as

𝐶𝑠𝑡 ( |𝑦 | ≤ 𝑅) ≡
∑︁
|𝑦 | ≤𝑅

𝐶𝑠𝑡 (𝑦).

Also, we estimate each 𝐶𝑠𝑡 (𝑥) by ⟪𝐶𝑠𝑡 (𝑥)⟫. As ⟪Ō𝑡 (𝑥)⟫ is an estimator for Γ′
𝑥 (𝑡), this estimate of

the covariance can then be used in estimating the error of 𝜌(𝑡) by inserting them into

Var[𝜌(𝑡))] = (𝜌(𝑡))2
(
Var[⟪Ō𝑡 (𝑥)⟫]
⟪Ō𝑡 (𝑥)⟫2

+ Var[⟪Ō0(𝑥)⟫]
⟪Ō0(𝑥)⟫2

− 2
Cov[⟪Ō𝑡 (𝑥)⟫, ⟪Ō0(𝑥)⟫]
⟪Ō𝑡 (𝑥)⟫⟪Ō0(𝑥)⟫

)
.

We expect𝐶𝑠𝑡 ( |𝑦 | ≤ 𝑅), and thus estimated 𝜎𝜌(𝑡 ) , to saturate as 𝑅 increases due to exponential
suppression of spatial correlation. To reduce computational intensity, the blocking of lattice into 24

blocks is introduced, following the suggestion in Ref. [9]. The plots of estimated 𝜎𝜌(𝑡 ) as a function
of 𝑅/2 for flowed energy with different flow time and gauge step size 𝛿𝜏𝐺 is shown in Fig 4. The

Figure 4: The plots of estimated 𝜎𝜌(𝑡 ) as a function of 𝑅/2 for flowed energy with different flow time, of 4
and 16 shown as examples, and gauge step size 𝛿𝜏𝐺 . The plots are observed to plateau around 𝑅/2 = 4.

error on the plots are computed using the formulae for the covariance of covariances presented in
Ref. [9]. As can be seen from the graph, the error saturates at 𝑅/2 = 4. Using this value of 𝑅, we
computed the estimate of local autocorrelation of flowed energy.

On the other hand, we can also make a quick estimate of local autocorrelation coefficient using
a binning method. For this, we first divide the MC chain into 𝑛bin bins, estimate 𝜌(𝑡) |𝑏 using
master-field technique on each bin, 𝑏, and take the average and standard deviation of the mean as
the estimate of 𝜌(𝑡) and its error, respectively. As long as each bin is long enough as compared to
autocorrelation time of interest and as there are enough many bins to allow us to use Central Limit
Theorem, estimation of error on autocorrelation function via binning is valid. The comparison of
estimated autocorrelation coefficients (ACC) based on master-field technique and binning is shown

6
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in Fig. 5. They are not significantly different albeit the small number of bins used so that we can
use binning for quick estimates of autocorrelation time, as it involves a less amount of computation.
Note that we now have much smaller noise and clearer signal, as compared to volume-averaged
autocorrelation coefficients.
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Figure 5: Autocorrelation coefficient (ACC) estimated using master-field technique for 𝜏𝑤 = 4, 16. The
error of ACC’s in the left plot is estimated also using master-field technique. The error in the right by binning
of bin size of 4. ACC with FTHMC is observed to diminish faster than with HMC. Also, two different
estimation methods produce similar plots.

5. Conclusion and outlook

The master-field autocorrelation method is intended to be used for parameter optimization, and
plots of ACC presented in Fig. 5 allows us to discern effects of different algorithms and parameters
on autocorrelation based on a small number of configurations, serving our purpose. However,
to gain an idea on effects of different algorithms with various parameter choices, exponential
autocorrelation times, 𝜏exp, for each flowed energy with different HMC parameters are estimated
by fitting 𝑒−𝑡/𝜏 to the data. Due to a limited number of configurations, the attempt to estimate the
error was not made. Table 3 collects 𝜏exp for each algorithm and HMC parameter choice, and Tab. 4
the ratios of 𝜏exp(𝜌 = 0.0, 𝛿𝜏𝐺 = 1/48) for HMC to 𝜏exp with other HMC parameters. The table
suggests that FTHMC reduces autocorrelation time by a factor of about 1.5. At physical pion mass,
we expect to see full improvement of HMC simulation by a factor of around 1.5.

In the period between the presentation of this conference talk and our proceedings, we have
made substantive additional progress on several fronts. The software implementation in Grid
[10] for calculating ln Det F𝑡∗(𝑉) and force from this action has been carefully optimized and
the FTHMC overhead (link smearing, force chain rule, and Jacobian force) now run around four
times faster. These optimizations took the form of three types. Firstly, the data parallel layer was
initially performing redundant work on both checkerboards of the lattice when only gauge links on
a single checkerboard were required to be updated. Secondly, latencies in GPU kernel launch were
substantial, and greater GPU utilization was obtained by fusing multiple loops into a single kernel
call. Finally, the staple assembly was accelerated by using a single halo-exchange and generalized
stencil objects in place of repeated covariant shifts. The overhead now occupies 2.2% of the total
run time when we start from a thermalized configuration using a single node with 8 GPU’s on
Frontier, making our conclusion even stronger.

The FTHMC approach has also been independently implemented and optimized in the Grid
Python Toolkit (GPT) framework [11], serving as a further check on the methods. In a further
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study within GPT, the algorithm was tuned and combined with longer trajectories up to 𝜏 = 8. Both
FTHMC and usage of longer trajectories proved to accelerate decorrelation of infrared observables
studied here. They also improved global topological charge sampling at physical quark masses in
large-volume and fine-lattice simulations. Gains from both effects are additive, and we are studying
in more detail these promising algorithmic directions which may lead to deeper understanding and
further gains in the future. The method is now being used in production of a new RBC-UKQCD
2+1f ensemble with physical quark masses, 1283 × 288 volume, and 𝑎−1 = 3.5 GeV. An overall
gain in autocorrelation is around 3.5. The preservation of topological tunneling is demonstrated
and will enable us to take a continuum limit based on four lattice spacings for a number of physical
quantities. The method will be the subject of an in-preparation journal publication.
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𝛿𝜏𝐺 = 1/48 𝛿𝜏𝐺 = 1/96

𝜌 𝜏𝑊 = 4 𝜏𝑊 = 8 𝜏𝑊 = 12 𝜏𝑊 = 16 𝜏𝑊 = 4 𝜏𝑊 = 8 𝜏𝑊 = 12 𝜏𝑊 = 16
0.0 14.28 22.439 26.6961 27.822 14.0 22.768 27.613 29.6098

0.100 11.2 17.3 20.628 21.68 10.53 15.776 19.071 20.683
0.112 10.87 15.62 17.97 19.2 10.0 14.862 17.25 18.86
0.124 10.14 14.8 16.96 17.68 10.4 15.686 18.884 20.453

Table 3: Estimates of exponential autocorrelation times 𝜏exp computed by fitting 𝑒−𝑡/𝜏exp to the ACC for
different Wilson flow time 𝜏𝑊 , 𝜌, and 𝛿𝜏𝐺 values

𝛿𝜏𝐺 = 1/48 𝛿𝜏𝐺 = 1/96

𝜌 𝜏𝑊 = 4 𝜏𝑊 = 8 𝜏𝑊 = 12 𝜏𝑊 = 16 𝜏𝑊 = 4 𝜏𝑊 = 8 𝜏𝑊 = 12 𝜏𝑊 = 16
0.0 1 1 1 1 1.019 0.9855 0.96681 0.93961

0.100 1.275 1.2967 1.2942 1.2832 1.356 1.4224 1.3998 1.3451
0.112 1.313 1.436 1.485 1.4487 1.428 1.5098 1.5476 1.4754
0.124 1.408 1.516 1.574 1.5736 1.373 1.4305 1.4137 1.3603

Table 4: The ratios of 𝜏exp (𝜌 = 0.0, 𝛿𝜏𝐺 = 1/48) for HMC to 𝜏exp with other HMC parameters
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